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Abstract

Background: Flow cytometry is a popular technology for quantitative single-cell profiling of cell surface markers. It
enables expression measurement of tens of cell surface protein markers in millions of single cells. It is a powerful tool
for discovering cell sub-populations and quantifying cell population heterogeneity. Traditionally, scientists use
manual gating to identify cell types, but the process is subjective and is not effective for large multidimensional data.
Many clustering algorithms have been developed to analyse these data but most of them are not scalable to very
large data sets with more than ten million cells.

Results: Here, we present a new clustering algorithm that combines the advantages of density-based clustering
algorithm DBSCAN with the scalability of grid-based clustering. This new clustering algorithm is implemented in
python as an open source package, FlowGrid. FlowGrid is memory efficient and scales linearly with respect to the
number of cells. We have evaluated the performance of FlowGrid against other state-of-the-art clustering programs
and found that FlowGrid produces similar clustering results but with substantially less time. For example, FlowGrid is
able to complete a clustering task on a data set of 23.6 million cells in less than 12 seconds, while other algorithms
take more than 500 seconds or get into error.

Conclusions: FlowGrid is an ultrafast clustering algorithm for large single-cell flow cytometry data. The source code
is available at https://github.com/VCCRI/FlowGrid.
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Background
Recent technological advancement has made it possible
to quantitatively measure the expression of a handful of
protein markers in millions of cells in a flow cytome-
try experiment [1]. The ability to profile such a large
number of cells allows us to gain insights into cellular
heterogeneity at an unprecedented resolution. Tradition-
ally, cell types are identified based on manual gating of
several markers in flow cytometry data. Manual gating
relies on visual inspection of a series of two dimensional
scatter plots, which makes it difficult to discover struc-
ture in high dimensions. It also suffers subjectivity, in
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terms of the order in which pairs of protein markers are
explored, and the inherent uncertainty of manually draw-
ing the cluster boundaries [2]. An emerging solution is
to use unsupervised clustering algorithms to automati-
cally identify clusters in potentially multidimensional flow
cytometry data.

The Flow Cytometry Critical Assessment of Population
Identification Methods (Flow-CAP) challenge has com-
pared the performance of many flow cytometry clustering
algorithms [3]. In the challenge, ADIcyt has the highest
accuracy but has a long runtime, which makes it impracti-
cal for routine usage. Flock [4] maintains a high accuracy
and reasonable runtime. After the challenge, several algo-
rithms have been built for flow cytometry data analysis
such as FlowPeaks [5], FlowSOM [6] and BayesFlow [7].
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FlowPeaks and Flock are largely based on k-means clus-
tering. k-means clustering requires the number of clus-
ters (k) to be defined prior to the analysis. It is hard to
determine a suitable k in practice. FlowPeaks performs
k-means clustering with a large initial k, and iteratively
merges nearby clusters that are not separated by low den-
sity regions into one cluster. Flock utilises grids to iden-
tify high density regions, which the algorithm then uses
to identify initial cluster centres for k-means clustering.
This grid-based method of identifying high density region
allows k-means clustering to converge much quicker com-
pared to using random initialisation of cluster centres, and
also directly identifies a suitable value for k. FlowSOM
starts with training Self-Organising Map (SOM), followed
by consensus hierarchical clustering of the cells for meta-
clustering. In the algorithm, the number of clusters (k) is
required for meta-clustering.

BayesFlow uses a Bayesian hierarchical model to iden-
tify different cell populations in one or many samples.
The key benefit of this method is its ability to incorporate
prior knowledge, and captures the variability in shapes
and locations of populations between the samples [7].
However, BayesFlow tends to be computational expen-
sive as Markov Chain Monte Carlo sampling requires a
large number of iterations. Therefore, BayesFlow is often
impractical for flow cytometry data sets of realistic size.

These algorithms perform well on the Flow-CAP data
sets, but they may not be scalable to larger data sets that
we are dealing with nowadays – those with tens of millions
of cells. Aiming to quantify cell population heterogene-
ity in huge data sets, we have to develop an ultrafast and
scalable clustering algorithm.

In this paper, we present a new clustering algorithm
that combines the benefit of DBSCAN [8] (a widely-
based density-based clustering algorithm) and a grid-
based approach to achieve scalability. DBSCAN is fast
and can detect clusters with complex shapes in the pres-
ence of outliers [8]. DBSCAN starts with identifying core
points that have a large number of neighbours within
a user-defined region. Once the core points are found,
nearby core points and closely located non-core points
are grouped together to form clusters. This algorithm will
identify clusters that are defined as high-density regions
that are separated by the low-density regions. However,
DBSCAN is memory inefficient if the data set is very large,
or has large highly connected components.

To reduce the computational search space and mem-
ory requirement, our algorithm extends the idea of
DBSCAN by using equal-spaced grids like Flock. We
implemented our algorithm in an open source python
package called FlowGrid. Using a range of real data
sets, we demonstrate that FlowGrid is much faster
than other state-of-the-art flow cytometry clustering
algorithms, and produce similar clustering results. The

detail of the algorithm is presented in the Methods
section.

Methods
The key idea of our algorithm is to replace the calcula-
tion of density from individual points to discrete bins as
defined by a uniform grid. This way, the clustering step
of the algorithm will scale with the number of non-empty
bins, which is significantly smaller than the number of
points in lower dimensional data sets. Therefore the over-
all time complexity of our algorithm is dominated by the
binning step, which is in the order of O(N). This is signifi-
cantly better than the time complexity of DBSCAN, which
is in the order of O(NlogN). The definition and algorithm
are presented in the following subsections.

Definition
The key terms involved in the algorithm are defined in this
subsection. A graphical example can be found in Fig. 1.

• Nbin is the number of equally sized bins in each
dimension. In theory, there are (Nbin)d bins in the
data space, where d is the number of dimensions.
However, in practice, we only consider the
non-empty bins. The number of non-empty bins (N)
is less than (Nbin)d , especially for high dimensional
data. Each non-empty bin is assigned an integer index
i = 1 . . . N .

• Bini is labelled by a tuple with d positive integers
Ci = (Ci1, Ci2, Ci3, . . . , Cid) where Ci1 is the
coordinate (the bin index) at dimension 1. For

Fig. 1 An illustrative example of the FlowGrid clustering algorithm. In this
example, Bin 1, Bin 2, Bin 3 and Bin 6 are core bins as their Denb are larger than
MinDenb (5 in this example), their Denc are larger than MinDenc (20 in thi
s example), and their Denb are larger than ρ% (75% in this example) of
its directly connected bins. Dist(C1, C2) = √

12 + 12 = √
2 ≤ √

ε

(ε = 2 in this example), so Bin 1 and Bin 2 are directly connected.
Dist(C2, C4) = √

12 + 12 = √
2 ≤ √

ε , so Bin 2 and Bin 4 are directly
connected. Therefore, Bin 1, Bin 2 and Bin 4 are mutually connected,
and they are assigned into the same cluster. Bin 5 is not a core bin but
is a border bin, as it is directly connected to Bin 6, which is a core bin.
Bin 3 is a outlier bin, as it is not a core bin nor a border bin. In practice,
MinDenb is set to be 3, MinDenc is set to 40 and ρ is set to be 85
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example, if Bini has coordinate Ci = (2, 3, 5), this bin
is located in second bin in dimension 1, third bin in
dimension 2 and the fifth bin in dimension 3.

• The distance between Bini and Binj is defined as

Dist(Ci, Cj) =
√
√
√
√

d
∑

k=1

(

Cik − Cjk
)2 (1)

• Bini and Binj are defined to be directly connected if
Dist(Ci, Cj) �

√
ε, where ε is a user-specified

parameter.
• Denb(Ci) is the density of Bini, which is defined as

the number of points in Bini.
• Denc(Ci) is the collective density of Bini, calculated by

Denc(Ci) =
∑

{j|Binj andBini are directly connected}
Denb(Cj)

(2)
• Bini is a core bin if

1 Denb(Ci) is larger than MinDenb, a user-specified
parameter.

2 Denb(Ci) is larger than ρ% of its directly
connected bins, where ρ is a user-specified
parameter.

3 Denc(Ci) is larger than MinDenc, a user-specified
parameter.

• Bini is a border bin if it is not a core bin but it is
directly connected to a core bin.

• Bini is an outlier bin, if it is not a core bin nor a
border bin.

• Bina and Binb are in the same cluster, if they satisfy
one of the following conditions:

1 they are directly connected and at least one of
them is core bin;

2 they are not directly connected but are connected
by a sequence of directly connected core bins.

• Two points are in the same cluster, if they belong to
the same bin or their corresponding bins belong to
the same cluster.

Algorithm
Algorithm 1 describes the key steps of FlowGrid, starting
with normalising the values in each dimension to range
between 1 and (Nbin + 1). Then, we use the integer part
of the normalised value as the coordinate of its corre-
sponding bin. Then, the SearchCore algorithm is applied
to discover the core bins and their directly connected bins.
Once the core bins and connections are found, Breadth
First Search(BFS) is used to group the connected bins
into a cluster. The cells are labelled by the label of their
corresponding bins.

Algorithm 1: FlowGrid
input : X, Nbin, ε, ρ, MinDenb, MinDenc
output: DataLabel
1 Normalise the data X ranging from 1 to (Nbin + 1)

2 Assign data into corresponding bins based on the
integer of normalised value

3 Identify Sbin as the set of non-empty bins
4 Search the core bins and their directly connected bins

by SearchCore
5 Group connected bins into a cluster by Breadth First

Search(BFS)
6 Label cells by the label of their corresponding bins

Algorithm 2: SearchCore
input : Sbin, ε, ρ, MinDenb, MinDenc
output: Score, L
Initial an empty adjacency list L.
Score = {}
forall the Bini in Sbin do

if Denb(i) > MinDenb then
nnBin=radiusNeighbors(Sbin, Bini, ε)
nnCount counting the number of points for
each bin in nnBin
if Denb(i) is greater than ρ% of nnCount then

Denc(i)= the sum of nnCount
if Denc(i) > MinDenc then

Score = Score ∪ {i}
mapping bini with nnBin in L

end
end

end
end
The input of radiusNeighbors is all non-empty bins,
the query bin and the maximum query distance

√
ε.

The output is the bins whose distance with the query
bin are less than

√
ε (including the query bin).

Evaluation
Procedure
FlowGrid aims to be an ultrafast and accurate clustering
algorithm for very large flow cytometry data. Therefore,
both the accuracy and scalability performance need to
be evaluated. The benchmark data sets from Flow-CAP
[3], the multi-centre CyTOF data from Li et al. [9] and
the SeaFlow project [10] are selected to compare the
performance of FlowGrid against other state-of-the-art
algorithms, FlowSOM, FlowPeaks, and FLOCK. These
three algorithms are chosen because they are widely used,
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Algorithm 3: Breadth First Search(BFS)
input : Score, Sbin, adjacency list L
output: Bin Label
Label every bin as -1
Index=1
for Bini in Score do

if the laebl of Bini is -1 then
Queue={}
Label Bini as Index
Queue.push(Bini)
while Queue is not empty do

Bin1= Queue.pop()
forall the directed connected Bin2 of Bin1
do

if the laebl of Bin2 is -1 then
Label Bin2 as Index
if Bin2 is core bin then

Queue.push(Bin2)
end

end
end

end
index=index +1

end
end

are generally considered to be quite fast, and have good
accuracy.

Three benchmark data sets from Flow-CAP [3] are
selected for evaluation, including the Diffuse Large B-cell
Lymphoma (DLBL), Hematopoietic Stem Cell Transplant
(HSCT), and Graft versus Host Disease(GvHD) data set.
Each data set contains 10-30 samples with 3-4 markers,
and each sample includes 2,000-35,000 cells.

The multi-centre CyTOF data set from Li et al. [9] pro-
vides a labelled data set with 16 samples. Each samples
contains 40,000-70,000 cells and 26 markers. Since only 8
out fo 26 markers are determined to be relevant markers
in the original paper [9], only these 8 markers are used for
clustering.

We also use three data sets from the SeaFlow project
[10] and they contain many samples. Instead of analysing
the independent samples, we analyse the concatenated
data sets as the original paper [10] and these concate-
nated data sets contain 12.7, 22.7 and 23.6 millions
of cells respectively. Each data sets include 15 features
but the original study only uses four features for clus-
tering analysis. The four features are forward scatter
(small and perpendicular), phycoerythrin, and chlorophyll
(small) [10].

In the evaluation, we treat the manual gating label as the
gold standard for measuring the quality of clustering. In

the pre-precessing step, we apply the inverse hyperbolic
function with the factor of 5 to transform the multi-centre
data and the SeaFlow data. As the Flow-CAP and multi-
centre CyTOF data contain many samples and we treat
each sample as a data set, we run all algorithms on each
sample. The performances are measured by the ARI and
runtime, which are reported by the arithmetic means (x̄)
and standard deviation (sd). For the Seaflow data sets, we
treat each concatenated data set as a data set. In the eval-
uation, all algorithms are applied on these concatenated
data sets.

To evaluate the scalability of each algorithm, we down-
sample the largest concatenated data set from the SeaFlow
project, generating 10 sub-sampled data sets in which the
numbers of cells range from 20 thousand to 20 million.

Performance measure
The efficiency performance is measured by the runtime
while the clustering performance is measured by Adjusted
Rand Index (ARI). ARI is used to measure the cluster-
ing performance. ARI is the corrected-for-chance version
of the Rand index [11]. Although it may result in nega-
tive values if the index is less than expected, it tends to
be more robust than many other measures like F-measure
and Rand index.

ARI is calculated as follow. Given a set S of n ele-
ments, and two groups of cluster labels (one group of
ground truth label and one group of predicted labels) of
these elements, namely X = {X1, X2, . . . , Xr} and Y =
{Y1, Y2, . . . , Ys}, the overlap between X and Y can be sum-
marized by nij where nij denotes the number of objects in
common between Xi and Yj: nij = |Xi ∩ Yj|.

ARI=

∑

ij

(

nij
2

)

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)]

/

(

n
2

)

1
2

[

∑

i

(

ai
2

)

+ ∑

j

(

bj
2

)]

−
[

∑

i

(

ai
2

)
∑

j

(

bj
2

)]

/

(

n
2

)

where ai = ∑

j nij and bj = ∑

i nij

Experimentation
FlowGrid is publicly available as an open source program
on GitHub. FlowSOM and FlowPeaks are available as R
packages from Bioconductor. The source code of Flock
is downloaded from its Sourceforge repository. To repro-
duce all the comparisons presented in this paper, the
source code and data can be downloaded from the GitHub
repository FlowGrid_compare. We run all the experiments
on six 2.60 GHz cores CPU with 32 G RAM.

FlowPeaks and Flock provide automated version with-
out any user-input parameter. FlowSOM requires one
user-supplied parameter (k, the number of clusters
in meta-clustering step). FlowGrid requires two user-
supplied parameters (binn and ε). To optimise the result,
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Table 1 Comparison of runtime (in seconds) of FlowGrid against other clustering algorithms

Data set Samples Markers Cells
Time in second (x̄ ± sd)

FlowGrid FlowSOM FlowPeaks Flock

Multi-center 16 8 29-77 ×103 0.23± 0.09 4.01± 1.08 2.27± 0.61 10.3± 3.45

Flow-CAP-GvHD 12 4 12-33×103 0.07± 0.04 2.16± 0.54 0.28± 0.16 0.58± 0.28

Flow-CAP-DLBL 30 3 2-25×103 0.04± 0.01 1.25± 0.32 0.10± 0.09 0.22± 0.16

Flow-CAP-HSCT 30 4 6-9×103 0.04± 0.02 1.35± 0.28 0.11± 0.02 0.28± 0.06

Seaflow0 - 4 23.6×106 11.51 572.65 NA 6628.30

Seaflow1 - 4 12.7×106 3.09 312.95 258.13 NA

Seaflow11 - 4 22.7×106 6.37 544.79 NA NA

NA represents that the algorithm got error in the data set

we try many k for FlowSOM and many combinations of
binn and ε for our algorithm.

Results
Performance comparison
Table 1 summaries the performance of our algorithm and
three other algorithms – FlowSOM, FlowPeaks, and Flock
in terms of runtime. Our algorithm is substantially faster
than other clustering algorithms in all the data sets. This
improvement of runtime is especially substantial in the
Seaflow data sets. FLOCK and FlowPeaks sometimes fail
to complete in some of the data sets. In a data set of 23.6
million cells, FlowSOM completes the execution in 572 s,
whereas FlowGrid completes the execution in only 12 s.
This is a 50× speed up. Table 2 summaries the clustering
accuracy performance. In Flow-CAP and the multi-centre
data sets, FlowGrid shares the similar clustering accuracy
(in terms of ARI) with other clustering algorithms but in
Seaflow data sets, FlowGrid gives higher accuracy than
other clustering algorithms.

Figure 2 shows that the clustering results of our algo-
rithm and three other algorithms in a HSCT sample. Flow-
Grid, FlowSOM and FlowPeaks recover similar number
of clusters, and the clustering results are largely similar.

Table 2 Comparison of accuracy (in ARI) of FlowGrid against
other clustering algorithms

Data set
ARI (x̄ ± sd)

FlowGrid FlowSOM FlowPeaks Flock

Multi-center 0.66± 0.20 0.75± 0.17 0.68± 0.20 0.66± 0.16

Flow-CAP-GvHD 0.79± 0.15 0.85± 0.11 0.72± 0.16 0.47± 0.20

Flow-CAP-DLBL 0.85± 0.10 0.84± 0.10 0.82± 0.15 0.84± 0.09

Flow-CAP-HSCT 0.90± 0.08 0.87± 0.14 0.83± 0.24 0.57± 0.27

Seaflow0 0.94 0.81 NA 0.27

Seaflow1 0.59 0.54 0.34 NA

Seaflow11 0.77 0.33 NA NA

NA represents that the algorithm got error in the data set

Flock generates too many clusters in this case. It is impor-
tant to note that FlowGrid also identifies cells that do not
belong to a main cluster (i.e., a high density region). These
cells can be viewed as ’outliers’, and are labelled as ’-1’ in Fig. 2.
This is a feature that is not present in other clustering
algorithms.

Scalability analysis
To further evaluate the scalability of the algorithms, we
sub-sample one Seaflow data set and the sampled data
sets range from 20 thousand to 20 million cells. Figure 3
shows the scalability of our algorithm and three other
algorithms. Flock has a low runtime when processing a
small data set, but its runtime dramatically increases to
6640 s for a 20 million-cell data set. FlowPeaks and Flow-
SOM share similar scalability but FlowPeaks is not able to
execute 20 million data set. Our algorithm have the best
performance in the evaluation as FlowGrid is faster than
other algorithm in all the sampled data by an order of
magnitude.

Parameter robustness analysis
Like other density-based clustering algorithm, parameter
setting is important. In our experience, Binn and ε are
data-set-dependent. We recommend trying out different
combinations of Binn between 4 and 15, and ε between
1 and 5. To pick the best parameter combinations, some
prior knowledge is helpful such as the expected number
of clusters and the proportion of outliers which should be
less than 10% in our experience.

We found that other parameters, namely MinDenb,
MinDenc and ρ are mostly robust across a wide range of
values.

To demonstrate this robustness, we used the bench-
mark data sets from Flow-CAP for a parameter sensitivity
analysis. For these experiments, we first set 3, 40, 85, 4
and 1 as the default value for MinDenb, MinDenc, ρ, Binn
and ε, respectively. In each experiment, we only change
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Fig. 2 Visual comparison of the clustering performance of FlowGrid, FlowPeaks, FlowSOM, and Flock using manual gating (top row) as the gold
standard

one parameter to test its sensitivity to the overall clas-
sification result. The performance is measured by ARI
and runtime. In the first experiment, we varied MinDenb
from 1 to 50 while fixing other parameters. In the sec-
ond experiment, we varied MinDenc ranging from 10 to
300 while fixing other parameters. In the third experi-
ment, we varied ρ ranging from 70 to 95 while fixing other
parameters.

Figure 4 demonstrates that the clustering accu-
racy and runtime are largely insensitive to MinDenb,
MinDenc and ρ across a large range of parameter val-
ues. The experiments are applied to all the bench-
mark data sets from Flow-CAP and similar results
are observed in all the benchmark data sets. In our
experiments, when MinDenb, MinDenc and ρ are set

to be 3, 40 and 85 respectively, FlowGrid maintains
good clustering performance and excellent runtime.
They are therefore set as the default parameters for
FlowGrid.

Discussion
In this paper, we have developed an ultrafast cluster-
ing algorithm, FlowGrid, for single-cell flow cytome-
try analysis, and compared it against other state-of-the-
art algorithms such as Flock, FlowSOM and FlowPeaks.
FlowGrid borrows ideas from DBSCAN for detection
of high density regions and outliers. It does not only
perform well in the presence of outliers, but also have
great scalability without getting into memory issues. It
is both time efficient and memory efficient. FlowGrid
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Fig. 3 Comparison of the runtime of FlowGrid, FlowPeaks, FlowSOM, and Flock using data sets with different number of cells

shares similar clustering accuracy with state-of-the-art
flow cytometry clustering algorithms, but it is substan-
tially faster than them. With any given number of markers,
the runtime of FlowGrid scales linearly with the num-
ber of cells, which is a useful property for extremely large
data sets.

MinDenb and MinDenc are density threshold parame-
ters to reduce the search space of high density bins. If the
parameters are set very low, the runtime may fraction-
ally increase but the accuracy is not likely to be affected.
However, if the parameters are set very high, the runtime

will also fractionally decreases but it may lead to sep-
aration of real clusters and create spurious outliers. In
any case, we showed that the performance of FlowGrid
is generally robust against changes in MinDenb, MinDenc
and ρ.

The current implementation of FlowGrid is already
very fast for most practical purposes. In the future, if
the data size grows even larger, it is possible to further
speed up FlowGrid by parallelising the binning step of the
algorithm, which is currently the most computationally
intensive step of the algorithm.

Fig. 4 Sensitivity analysis of three different parameters on clustering accuracy (as measured by adjusted rand index; ARI) and runtime (seconds)
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