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Abstract

Background: Aggregation of high-throughput biological data using pathway-based approaches is useful to associate
molecular results to functional features related to the studied phenomenon. Biological pathways communicate with
one another through the crosstalk phenomenon, forming large networks of interacting processes.

Results: In this work, we present the pathway crosstalk perturbation network (PXPN) model, a novel model used to
analyze and integrate pathway perturbation data based on graph theory. With this model, the changes in activity and
communication between pathways observed in transitions between physiological states are represented as networks.
The model presented here is agnostic to the type of biological data and pathway definition used and can be
implemented to analyze any type of high-throughput perturbation experiments. We present a case study in which we
use our proposed model to analyze a gene expression dataset derived from experiments in a BKS-db/db mouse model
of type 2 diabetes mellitus–associated neuropathy (DN) and the effects of the drug pioglitazone in this condition. The
networks generated describe the profile of pathway perturbation involved in the transitions between the healthy and
the pathological state and the pharmacologically treated pathology. We identify changes in the connectivity of
perturbed pathways associated to each biological transition, such as rewiring between extracellular matrix, neuronal
system, and G-protein coupled receptor signaling pathways.

Conclusion: The PXPN model is a novel, flexible method used to integrate high-throughput data derived from
perturbation experiments; it is agnostic to the type of data and enrichment function used, and it is applicable to a
wide range of biological phenomena of interest.
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Introduction
The systems biology framework is useful for integrating
large-scale data, such as those obtained from high-
throughput genomic technologies. Pathway-based ap-
proaches can aggregate the results of these technologies
regarding biological features of interest, which, if done
correctly, can help interpret the phenomenological sig-
nificance of the molecular observations at a functional
level [1].

Network models are useful because they provide a gen-
eralized mathematical framework to describe biological
states [2]. In this context, it is important to note that path-
ways themselves can be represented as networks, as path-
ways are sets of molecules with sequential interactions
that lead to the activation or repression of effector mole-
cules, leading to a biological function [3]. More import-
antly, given that pathways are not isolated, but in fact
communicate with each other, these pathways form large
networks that cover the range of biological functions asso-
ciated with the functioning of a biological system [4].
Pathway crosstalk describes communication between

functional pathways [5]. This concept is widely used in
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many biological settings to describe instances in which
two functional pathways interact with each other; how-
ever, different researchers have used different interpreta-
tions of the concept [6]. The sequential molecular
interactions in a pathway involve a flow of information
(for instance, external stimuli through signaling trans-
duction pathways). Since biomolecules may have more
than one role and may be involved in more than one
biological function, there may be interactions between
these pathways. Crosstalk between pathways allows for
alternative information flows between biological func-
tions. This phenomenon provides the biological system
with emergent properties such as robustness and adapt-
ability to external perturbations, with biomedical impli-
cations [7].
The insights that can be obtained from network

approaches to biology can be used to identify new leads
in the study of complex diseases [8]. An example of such
a complex disease is diabetes mellitus (DM). The most
prevalent of diabetes’ chronic complications is diabetic
neuropathy [9]. Although the exact mechanisms that
lead to this condition in the diabetic patient are not
completely described, growing evidence suggests that al-
terations in biological pathways may play an important
role in the condition [10]. Currently, therapeutic options
for this condition are limited [11]. Recent works [12]
have focused on the role of lipid metabolism in the
development of neuropathy and the use of pharmaco-
logical agents that target lipid metabolism, such as pio-
glitazone, a peroxisome proliferator-activated receptor
gamma (PPARG) agonist with well-described antidia-
betic effects [13].
This article presents a general method for constructing

networks describing altered pathways between physio-
logical states and perturbations in communication be-
tween these pathways. This method was used to construct
networks to identify perturbations observed between the
physiological, pathological, and pharmacological states in
a murine model of type 2 DM (T2DM) peripheral neur-
opathy and the effects of treatment with pioglitazone.
These networks provide insights into the importance of
certain functional pathways in the different transitions
between these states, which may in turn be used to drive
novel experimental research on alternative pharmaco-
logical treatments for diabetic neuropathy.

Methods
The pathway Crosstalk perturbation network model
In this work, the pathway crosstalk perturbation network
(PXPN) is proposed as a model for integrating
high-throughput perturbation biological data to gain in-
sights into the changes in communication between func-
tional biological processes. Figure 1 illustrates a schematic
representation of the elements in the model, while the

formal definitions of the elements in the PXPN model are
provided in Additional file 1. The model is agnostic to the
type of high-throughput data, the pathway description,
and the statistical measure or algorithm used to define
enrichment.
Basically, the PXPN model consists of four steps: 1)

identification of perturbed pathways between two physio-
logical states, 2) identification of crosstalk among the per-
turbed pathways, 3) identification of perturbations in the
crosstalk regions between perturbed pathways, and 4)
Network integration. A pseudocode representation of this
model is available in Additional file 2. The scripts used in
the current study are available in our Github repository
(https://www.github.com/hurlab/pxpn_neuropathy).
Step 1 involves taking i) an expression dataset with in-

formation on two physiological conditions and ii) a list of
pathways, defined by a single set of inclusion criteria and
curatorial rules, such as those obtained from the same
database. These are used as input for an enrichment func-
tion to obtain a list of pathways that are considered to be
“enriched,” which in this context indicates a perturbation
in pathway activity between the physiological states.
Step 2 involves looking for crosstalk between the path-

ways that were identified as perturbed in the previous
step. Crosstalk between pathways is found if the path-
ways share genes, or, in other words, if the lists of genes
for two pathways overlap (see definition in Additional
file 1). The intersection between these two lists
represents the genes that belong to the crosstalk region
(or regions) between these pathways. Importantly, our re-
search focused only on the crosstalk regions of pathways
that were identified as perturbed in step 1.
Step 3 involves taking the list of crosstalk regions pre-

viously identified and using the expression data and the
same enrichment function on it. Doing this allows iden-
tifying which crosstalk regions are perturbed themselves.
Perturbation in the crosstalk region between two path-
ways indicates a change of activity in the molecules that
are shared between pathways observed between the two
physiological conditions, which in turn indicates a
perturbation in the communication between pathways,
as the expression of genes that connect the two path-
ways is being collectively perturbed.
Step 4 involves integrating the outputs of steps 1 and 3

into a network model. This is done by representing the per-
turbed pathways from step 1 as nodes in a graph, then es-
tablishing undirected links between pairs of pathways if the
crosstalk region between them was identified as perturbed
in step 3. The resulting undirected graph is referred to as a
Pathway Crosstalk Perturbation Network, which represents
the pathways that are perturbed between two biological
states, along with the perturbations found in their crosstalk
regions. This network model can be further analyzed from
a graph-theoretic perspective.
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The present research focused on the changes in path-
way perturbation and communication through the ana-
lysis of changes in topology, modular structure, and
connectivity, in PXPNs associated to physiological tran-
sitions. Given two phenotypes, such that one can give
way to the other sequentially, the transition from the
first to the second phenotype may involve the perturb-
ation of a set of biological functions, which can be mod-
eled using a PXPN. The progression from a
physiologically healthy state to a pathological state of
disease is an important biomedical case. This

pathological state may, in turn, by using pharmacological
agents, advance to a state of partially restored function-
ality. Hypothetically, a “perfect” drug could induce a
final transition from the pharmacological state of partial
functionality back to a healthy state indiscernible from
the original physiological state. Each of these transitions
can be modeled as three different PXPNs that represent
the perturbations associated with each transition. As a
case study, this model was implemented with data from
a study of the effects of pioglitazone on murine
T2DM-associated neuropathy.

Fig. 1 General representation of the pathway crosstalk perturbation network (PXPN) model. Panel a shows a pathway, a directed graph composed of
nodes representing biomolecules and edges representing interactions between them that lead to a biological function. The set of nodes in a pathway
is analogous to a gene set. Panel b shows an example of a pathway crosstalk in which two pathways that are involved in different biological functions
share a molecule. Panel c shows a pathway crosstalk network (PXN) containing all pathways in a pathway collection and the links between pathways
that crosstalk with one another (that is, pathways that have a nonempty intersection). Panel d shows a schematic representation of an enrichment
analysis in which data from two different biological states and a list of pathways are taken by an enrichment function, which returns a list of pathways
considered to be enriched. Finally, panel E shows the PXPN model in which an enrichment function takes data from two biological states and the set
of nodes and edges that define a PXN and returns a network composed by enriched pathways and enriched crosstalk regions
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RNA-Seq data
RNA-Seq raw data were obtained from a previous study
on pioglitazone’s effects on diabetic complications [12]
using leptin receptor-deficient db/db mice, a model of
T2DM. In brief, male C57BLKS (BKS) db/+ and db/db
mice (BKS.Cg-m+/+Leprdb/J) were purchased from the
Jackson Laboratory (Bar Harbor, ME). Mice were fed
with or without 15 mg/kg pioglitazone (112.5 mg pioglit-
azone/kg chow for a dose of 15 mg/kg to the mouse) for
11 weeks starting from 5 weeks of age. Pioglitazone treat-
ment normalized renal function and improved small
nerve functions but did not improve large fiber func-
tions. Four complication-prone tissues—sciatic nerve
(SCN), dorsal root ganglia (DRG), glomeruli, and kidney
cortex—were collected at 16 weeks of age and examined
for their genome-wide gene expression profiles using
RNA-Seq (HiSeq 2000 paired-end read length of 100
bases). The current study focused on the three groups of
SCN data, including db/+ (nondiabetic denoted as
“healthy” group), db/db (diabetic denoted as “disease”
group), and db/db + Pio (diabetic with pioglitazone treat-
ment denoted as “treatment” group). There were n = 6
samples in each group.
The raw sequencing reads were first cleaned by re-

moving reads containing the adapter or poly-N and re-
moving low-quality (quality score < 30) reads using
Trimmomatic [14]. FastQC version 0.10.1 [15] was used
to assess the quality of raw reads. Clean reads were
mapped to the mouse reference genome GRCm38
(mm10) using Hisat2 [16]. The mapping summaries—
such as the percentage of reads that were uniquely
mapped, multiple mapped, or unmapped—were then
collected from the log files of Hisat2 runs. Feature-
Counts [17] was used to count reads mapped to individ-
ual genes. Only uniquely mapped reads were used in the
counting step. Then, the counting metrics were collected
from the summary file of each FeatureCounts run.
Genes were omitted with zero expression across all sam-
ples for the correlation and differential expression ana-
lysis. Fragments per kilobase of exon per million
mapped reads (FPKM) as a measurement of transcript
expression were calculated using an in-house script.

Pathway enrichment algorithm
The Reactome [18] collection of pathways was used in
this study. We used the complete set of Reactome mur-
ine pathways available through the Graphite R/Biocon-
ductor package [19]. The generally applicable gene set
enrichment (GAGE) [20], a cutoff-free enrichment al-
gorithm, was used to identify significantly enriched
pathways that were perturbed by diabetes or treat-
ment. The algorithm was run considering undirected
perturbations, with an enrichment significance thresh-
old set to q-value < 0.05.

Network analysis
Calculations for topological parameters—degree, cluster-
ing coefficient (CC), network density, average path
length, and number of connected components (islands
in the network)—were carried out using Igraph [21] for
R, NetworkX [22] for Python, and Cytoscape 3.3.0 [23].
Additionally, communities (subsets of nodes with high
intraconnectivity and low outbound connections) were
detected using the Infomap algorithm [24], as imple-
mented in the Igraph package.

Implementation for the study of physiological transitions
in the murine diabetic neuropathy model
For this study of murine diabetic neuropathy, the previ-
ously described RNA-Seq expression dataset and path-
ways from the Reactome database were the inputs of the
model. The differences between these groups represent
the transitions observed in a patient. First, the patient
transitions from a physiologically functional state to a
pathological state (health to disease, denoted as HTD).
Given therapy, the patient transitions from the patho-
logical state to a pharmacologically modulated state (dis-
ease to treatment, denoted as DTT). Finally, with
successful therapy the patient transitions back to the
physiological state (treatment to health, denoted as
TTH). Three networks, each representing one of these
physiological transitions, were constructed. It is pro-
posed that changes in pathway connectivity in different
transitions indicate changes in the overall impact of a
particular pathway activity in the observable phenotype.

Null model
To evaluate the significance of the topological parame-
ters of these three PXPNs, an ensemble of 5000 net-
works was generated for each transition using a null
model by randomly rewiring the edges, with a rewiring
probability proportional to the size of the intersection
between two pathways (measured as the Jaccard index).
For each network, each topological parameter was com-
pared against the null model using a Z-test. This model
allowed assessing whether particular topological proper-
ties of the obtained network differed from a randomly
generated network containing the same number of
nodes and edges (not all edges are possible, as not all
pathways crosstalk with each other).
A second null model, for evaluating the overall cap-

acity of the method of obtaining non-trivial network
structures from gene expression measurements, was
employed. For each of the three comparisons (HTD,
DTT, and TTH), an ensemble of 1500 random expres-
sion datasets was generated by shuffling the gene labels
of the original RNA-seq data. These data were used to
generate PXPNs using the established pipeline and com-
pared against those of the comparisons.
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Results
Network overview
Using the proposed approach, each transition between
physiological states was represented as a network with
characteristic structural features. The generated net-
works may be found in Additional files 3, 4, and 5.
Figure 2 illustrates the HTD network, which repre-
sents pathway alterations associated with the transi-
tion from the healthy state to the pathological
neuropathic condition. Between these two states, 104
pathways were altered, and 222 significant alterations
to the activity of crosstalk regions were observed. The
second network, visualized in Fig. 3, represents the
transition from the pathological state to a pharmaco-
logically modulated state (the DTT network). This
transition was associated with 78 altered pathways
and 149 crosstalk perturbations among them. Finally,
the TTH network, as illustrated in Fig. 4, describes
the alterations found between the pharmacologically
treated state and the healthy state, which would rep-
resent the perturbations observed in the transition
back to the healthy state. This TTH network included
110 altered pathways, with 213 edges representing
perturbed crosstalks between them. Additional file 6
illustrates the overlap among the pathways in these
three networks; these pathways and their q-values for
each transition are listed in Additional file 7.

Each physiological transition involves a precise combin-
ation of perturbed pathways, with specific communication
patterns between them. This is evident in terms of similar-
ity among the networks as each network has a portion of
exclusive and shared nodes. In all three transitions, 53
pathways were perturbed and therefore represented as
nodes in the network. The most similar networks in terms
of both nodes and edges were the DTT and TTH networks
(node Jaccard index = 0.55; edge Jaccard index = 0.45); the
most different were the HTD and TTH networks (node
Jaccard index = 0.49; edge Jaccard index = 0.43). Add-
itional files 8 and 9 contain similar values among the three
networks in terms of nodes and edges, respectively.
As each transition was associated with a specific net-

work, each network was associated with specific structural
characteristics. The communication between pathways as-
sociated with each transition between physiological states
was different, resulting in a unique network topology. This
in turn was reflected in network properties, such as the
average path length, the clustering coefficient, and the dis-
tribution of nodes into connected components and com-
munities inside connected components.

Global network parameters
The PXPNs exhibited global topological properties that
were nontrivial (Table 1). These properties were signifi-
cantly different from those observed in the networks

Fig. 2 Health to disease (HTD) network. This network contains the 104 pathways that were perturbed in the transition from health to disease and
the 222 crosstalk regions altered between these pathways. Communities of pathways related to similar biological functions are represented using
different colors
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generated using the rewiring null model. The second
null model, which constructed PXPNs from the original
data with shuffled gene labels, showed that: 1) in most
cases (1318, 1462, and 1190 out of 1500 random datasets
for the HTD, DTT, and TTH comparisons, respectively),
empty networks were generated, as no significant

pathway perturbation was found; 2) networks with more
than one edge included were generated in very few (106,
23, and 179, respectively) cases. Furthermore, these net-
works had trivial structures, such as stars and cliques.
Therefore, the structural properties of PXPN networks
may not be associated with random expression patterns,

Fig. 3 Disease to treatment (DTT) network. This network contains the 78 pathways that were perturbed in the transition from the disease state to
a pharmacologically modulated state and the 149 crosstalk regions altered between these pathways. Communities of pathways related to similar
biological functions are represented using different colors

Fig. 4 Treatment to health (HTD) network. This network contains the 110 pathways that were perturbed in the transition from health to disease
and the 213 crosstalk regions altered between these pathways. Communities of pathways related to similar biological functions are represented
using different colors
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but may be associated with the underlying biological
changes in pathway communication. Each PXPN had an
associated degree distribution (Additional files 10, 11, 12),
which was different from that of the random networks
generated following the null model. Additional file 13 pro-
vides comparable parameters for the networks generated
using the null model.
The three experimentally derived networks had clus-

tering coefficient values that were higher than the ones
expected from the null model (for instance, the average
clustering coefficient value for the HTD null model net-
works was 0.149). Nevertheless, the clustering coefficient
values of all networks were comparable (ranging from
0.513 to 0.620). Average path lengths were slightly
higher in the experimentally derived networks than in
the null model networks in the cases of the HTD and
TTH transitions. Interestingly, in the case of the DTT
transition, the average path length was considerably
lower than the one predicted by the null model (1.99,
compared with the predicted 3.26). This result suggests
that the transition induced by pharmacological treat-
ment on the pathological state involves perturbations
with short-range pathway communication, whereas the
perturbations from and to the physiological state require
longer-range changes in communication.
All three networks had low density for edges. Since

not all edges were biologically possible, as not all path-
ways are able to crosstalk, comparing the number of
edges against the total possible crosstalks between the
pathways in each network is important; we refer to this
as the specific density of a PXPN. In the HTD network,
19% of possible crosstalks were perturbed, where 26 and
20% of possible crosstalks were perturbed in the DTT
and TTH networks, respectively. Derived from this is the
observation of pathways that while they have a large

crosstalk potential with other perturbed pathways in a
transition, they appear disconnected nonetheless. For
instance, in the HTD network, the “regulation of insulin
secretion” could potentially connect to 32 pathways, but
it was disconnected, indicating that the crosstalk of this
pathway was not altered during the transition from
health to disease. This lack of observed connectivity
indicates that, in this transition, at least at the level of
gene expression perturbation, this pathway has little
system-wide influence.

Connectivity and modular structure of networks
Our proposed model allowed the representation of the
alterations between physiological states in pathway activ-
ity and communication as a graph. The structures of
these networks were nontrivial and different from those
of the random networks because the connections reflect
the perturbation of crosstalk regions associated to each
physiological transition. Therefore, there are differences
with respect to the connected components (subgraphs in
which any pair of nodes has a path between them) and
communities (modules inside a connected component in
which the nodes belonging to the same module have a
higher number of edges between them than the nodes
outside of the module). Differences in the organization
of these networks are indicative of specific communica-
tions between biological processes that were altered in
each physiological transition.
The HTD network (Fig. 2) was composed of 22 con-

nected components, 14 of which were single nodes. The
largest connected component contained 66 pathways (~
63% of all 104 pathways), which were related to the “neur-
onal system” processes. This component also included
other smaller communities related to “solute carrier
(SLC)-mediated transmembrane transport,” “extracellular
matrix (ECM) organization,” “G-protein coupled receptor
(GPCR) ligand binding,” and a community containing
diverse pathways, such as “hemostasis” and “GPCR down-
stream signaling.” The second largest connected compo-
nent contained 10 pathways (~ 10% of all nodes), which
were mainly related to “lipoprotein metabolism.”
The DTT network (Fig. 3) was composed of 16 con-

nected components, 7 of which were single nodes. In
this network, the largest connected component con-
tained only 21 pathways (~ 27% of all 78 pathways),
which were similar to those found in the “neuronal sys-
tem” community in the HTD network. The second lar-
gest connected component (19 pathways corresponding
to ~ 24% of the network nodes) was composed of three
communities: one comparable to the “lipoprotein metab-
olism” community in the HTD network, another related
to the “metabolism of lipids,” and the other containing
three pathways related to “retinoids.” Three other con-
nected components were comparable to the

Table 1 Structural properties of pathway crosstalk perturbation
networks for the transitions. Specific density refers to the number
of perturbed crosstalk regions compared against the total
number of possible crosstalks between the pathways in the
network. HTD, health to disease; DTT, disease to treatment; TTH,
treatment to health

HTD DTT TTH

Nodes 104 78 110

Edges 222 149 213

Density 0.041 0.050 0.036

Specific density 222/1116 149/566 213/1051

Average degree 4.27 3.82 3.87

Clustering coefficient 0.579 0.620 0.513

Average shortest path 3.71 1.99 3.72

Connected components 22 16 19

Single nodes 14 7 11
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communities found in the HTD network, such as “ECM
organization” (8.97%), “GPCR ligand binding” (8.97%),
and “SLC-mediated transmembrane transport” (6.41%).
Another connected component with four pathways re-
lated to the TCA cycle was also found.
The TTH network (Fig. 4) was composed of 19 con-

nected components, 11 of which were single nodes. This
network was dominated by the largest connected com-
ponent, which contained 59 pathways (~ 54% of all 110
pathways). The communities in this component were
similar to those in the largest component of the HTD
network, including the “neuronal system,” “SLC-me-
diated transmembrane transport,” “ECM organization,”
“GPCR-ligand binding,” and “GPCR-downstream signal-
ing.” Interestingly, a new community emerged, contain-
ing the “glycolysis,” “gluconeogenesis,” and “glucose
metabolism” pathways, which were connected to the
“ECM organization” community. A notable difference
between this network and the HTD network was the
changes in the communication of the GPCR community,
which became disconnected from the “ECM
organization” community and connected to the “neur-
onal” community.

Discussion
Biological systems function through the integration of dif-
ferent molecular processes. Pathway crosstalk occurs be-
cause biomolecules are involved in more than one single
biological function. This work presents the PXPN model,
a graph theory approach for analyzing high-throughput
gene expression perturbation data. Using the PXPN
model, large-scale data representing the differences be-
tween physiological states can be aggregated into network
structures that not only have reduced dimensionality, but
also have functional significance: they describe known bio-
logical processes. With this approach, representing the in-
herently dynamic nature of physiological transitions as
networks is possible; the resulting networks can be ana-
lyzed with a myriad of tools derived from graph and com-
plex network theory.
Much previous research on pathway crosstalk focused

on the phenomenon with the intention of reducing the
number of identified functions from pathway enrichment
analysis [25–27]. The goal of generating an integrated
network representation of pathway communication is
currently being explored through many different perspec-
tives [28, 29]. Our PXPN model assumes that biological
perturbations lead to changes in both pathway activity and
the communication of these pathways through crosstalk.
Therefore, pathway perturbation analysis may be
approached through a global representation of the
phenomenon, such as a network. By generating a network
that integrates information on pathway and crosstalk per-
turbation, the perturbation phenomenon may be studied

using tools derived from graph theory, allowing us to have
individual and global descriptors of the phenomenon in
terms of topological properties. Different approaches may
be complementary, and their use would depend on the in-
dividual research questions to be answered.
In this work, the PXPN model was used to gain a

topological description of the contribution of pathways
to the network. The focus was on the modular structure
of each PXPN, both at the level of connected compo-
nents and at the level of communities inside the con-
nected components, as well as how the emergence and
loss of crosstalk perturbation led to an evolution of the
modular structure as the system transitioned. The PXPN
model on the case study of murine diabetic neuropathy
was used to identify certain functional pathways that ap-
pear to be important to the progression of phenotypes,
based on their network properties. Also described was
how crosstalk activity between these pathways changes
through physiological transitions and how this affects
the organization of the network of pathways.
In this work, bioenergetic pathways related to glucose,

lipid, and TCA cycle metabolism were scattered over
multiple disconnected components disconnected from
one another. The role of bioenergetic pathways in the
development of diabetic neuropathy has been an active
area of recent research [30–33]. Our observations sug-
gest an independent contribution of these pathways to
the transitions between physiological states. Interest-
ingly, only the metabolism of lipoproteins was altered in
the transition from health to disease (the HTD network;
Fig. 2); TCA cycle metabolism and general lipid metab-
olism emerged only with the treatment of pioglitazone
(the DTT network; Fig. 3). Carbohydrate metabolism
pathways, including glycolysis and gluconeogenesis path-
ways, were only associated with the transition from the
pharmacological to the health state (the HTD network;
Fig. 4) and were the only instance of bioenergetic path-
ways belonging to the largest connected component of
any network.
Changes to the composition and function of the ECM

pathways have been reported to play a significant role in
the loss of nerve fibers during the progression of diabetic
neuropathy [34]. In each of the three experimental
PXPNs, ECM pathways were found to be organized in
distinctive communities. In the transitions from and to
the health state, crosstalk between the ECM- and neur-
onal system-related pathways was enriched, forming a
large connected component. In both cases, this crosstalk
was indirect through the SLC-mediated transmembrane
transport pathway; the smaller size of the largest compo-
nent in the DTT network can be partially explained by a
lack of enriched crosstalk through the SLC-mediated
transmembrane transport pathway. As previously men-
tioned, glucose bioenergetic metabolism pathways were
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only found in the TTH network, crosstalking with the
ECM pathways and the glycosaminoglycan (GAG) me-
tabolism pathways. GAGs are known to play critical
roles in the development of the central nervous system
[35] and are involved in the processes of axon regener-
ation in the peripheral nervous system [36].
GPCR signaling is widely known to be an important

mechanism of signal transduction and has been highly
studied in the biomedical setting as a drug target
[37]. In this study, changes in the connectivity of
GPCR signaling pathways were identified. In the con-
text of the HTD transition, GPCR signaling was dir-
ectly connected to the largest connected component
of the network through crosstalk with the hemostasis
pathway. Hemostasis perturbation was lost in the
DTT transition, leading to the formation of an iso-
lated component of GPCR signaling. Finally, while
hemostasis perturbation was found again in the TTH
transition, the crosstalk between this pathway and
GPCR was lost, while new connections from the

GPCR pathways to the neuronal system community
emerged through three pathways: “G alpha (z) signaling
events,” “integration of energy metabolism,” and “adenyl-
ate cyclase–activating pathway.” Recently, the parabrachial
pituitary adenylate cyclase–activating polypeptide
(PACAP) was shown to have an increased expression in
chronic pain [38]; our results indicate that the “adenylate
cyclase–activating pathway” shows a perturbation in the
transition to heath, which may connect neuronal function
pathways and GPCR signaling pathways.
Figure 5 summarizes the rewiring observed between

the communities associated with the ECM, GPCR, and
neuronal system pathways, showing a “network of net-
works” of communities in each biological transition. Our
PXPN model identifies changes in communication be-
tween pathways, which can be associated with the pro-
gression between altered states. With it, identifying
which crosstalking pathways are more relevant to each
biological transition is possible, which may in turn guide
new experimental research.

A B

C

Fig. 5 Pathway rewiring associated to different biological transitions. Each panel shows a network of communities identified in each transition:
health to disease in panel a, disease to treatment in panel b, and treatment to health in panel c. In panel a, the “GPCR signaling community” is
connected to the “ECM organization community” but not to the “neuronal system community.” In panel b, only four communities—“ECM
organization community,” “GPCR signaling community,” “SLC-mediated transport community,” and “neuronal system community”—survived with
no connections between communities. In panel c, the “GPCR signaling community” exhibits a rewiring, with a new connection (shown with a
thicker line in the image) to the “neuronal system community.” A gray outline indicates the community that contains the “hemostasis” pathway,
which changes in each transition as a consequence of pathway rewiring: it initially belongs to the “GPCR signaling community,” it is not found in
any community in panel b (as it is not perturbed in this transition), and finally, it belongs to the “ECM organization community”
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Conclusion
In this work, we presented a model to represent the alter-
ations in pathway activity and communication between
physiological states of clinical importance. This PXPN
model represents each physiological transition as a network
of perturbed and interacting pathways with a unique non-
random structure. These networks reflect the changes in
the functional biological processes that are observed in the
transitions between different physiological states. More im-
portantly, these networks give insights into the importance
that the communication between biological functions may
have in the progression between physiological states.
The PXPN model is agnostic to the type of perturbation

dataset and can be applied to analyze a variety of experi-
mental settings; when given an expression/perturbation
dataset and a suitable enrichment method, it is possible to
generate a PXPN. The topological properties of this net-
work, as well as the biological insights that can be un-
veiled from its analysis, depend on the nature of the data
and the assumptions of the enrichment methodology. In
this work, a diabetic neuropathy animal model (develop-
ment of diabetic neuropathy in db/db mice and treatment
of pioglitazone) was used as a case study. Our model iden-
tified changes in pathway connectivity, such as the rewir-
ing between pathways of extracellular matrix, neuronal
system, and GPCR signaling, in different biological transi-
tions of clinical importance.
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