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An agent-based model of the Notch
signaling pathway elucidates three levels of
complexity in the determination of
developmental patterning
Elaine R. Reynolds1,2* , Ryan Himmelwright2,3, Christopher Sanginiti2,4 and Jeffrey O. Pfaffmann5

Abstract

Background: The Notch signaling pathway is involved in cell fate decision and developmental patterning in
diverse organisms. A receptor molecule, Notch (N), and a ligand molecule (in this case Delta or Dl) are the central
molecules in this pathway. In early Drosophila embryos, these molecules determine neural vs. skin fates in a
reproducible rosette pattern.

Results: We have created an agent-based model (ABM) that simulates the molecular components for this signaling
pathway as agents acting within a spatial representation of a cell. The model captures the changing levels of these
components, their transition from one state to another, and their movement from the nucleus to the cell membrane
and back to the nucleus again. The model introduces stochastic variation into the system using a random generator
within the Netlogo programming environment. The model uses these representations to understand the biological
systems at three levels: individual cell fate, the interactions between cells, and the formation of pattern across the
system. Using a set of assessment tools, we show that the current model accurately reproduces the rosette pattern of
neurons and skin cells in the system over a wide set of parameters. Oscillations in the level of the N agent eventually
stabilize cell fate into this pattern. We found that the dynamic timing and the availability of the N and Dl agents in
neighboring cells are central to the formation of a correct and stable pattern. A feedback loop to the production of
both components is necessary for a correct and stable pattern.

Conclusions: The signaling pathways within and between cells in our model interact in real time to create a spatially
correct field of neurons and skin cells. This model predicts that cells with high N and low Dl drive the formation of the
pattern. This model also be used to elucidate general rules of biological self-patterning and decision-making.

Keywords: Agent-based modeling, Notch signaling pathway, Self-patterning

Background
Decision making during development is a widely studied
problem. Generally speaking, biologists have genetically
dissected fate pathways to identify molecules that inter-
act through extracellular receptors with other cells and
their environment to alter their transcription patterns
through signaling pathways. However, the route to cell
fate is not straightforward and a detailed understanding

of how groups of cells develop spatial relationships ne-
cessitates a systems-level approach.
One of the canonical pathways for fate decisions and

patterning is the Notch pathway. This pathway is used
in multiple tissue types and across evolutionary time; it
is the most common pathway used by adjacent cells to
make binary fate decisions [1]. The Drosophila early
embryo is the best studied Notch pathway, where Notch
(N), an extracellular receptor, and its ligand Delta (Dl)
act to determine the fate of a sheet of ectodermal cells,
with cells adopting either a neuronal or epidermal fate
in a reproducible rosette spatial pattern [2, 3]. Cells with
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high levels of N protein assume an epidermal fate,
while a low level of N produces the neuronal fate.
This signaling pathway yields a reproducible geometry
and consistent number of neural and epidermal cells,
however it is unclear how the identical cellular path-
ways within each cell interact to create pattern within
a group of cells.
The N receptor, various ligands, modifying proteins,

endocytic proteins, and transcriptional regulators have
been identified and a detailed outline of the pathway has
been established and is detailed in Fig. 1 [4, 5]. The
signaling pathway begins with the transcription and
translation of N and Dl proteins, which transit to the cell
membrane (step 1). Dl undergoes an additional endocy-
tic processing step and reappears on the surface as the
ligand for N (step 2) [6, 7]. A heterodimeric interaction
on adjacent cell surfaces occurs between the Dl ligand
and N receptor resulting in a cleavage event and endo-
cytosis of a N fragment (step 3). A second cleavage by
presenilin releases a N product that is translocated to
the nucleus (step 4) [8, 9]. This N fragment orchestrates,
with several other transcription factors, the downstream
regulation of genes associated with the epidermal fate.
The no or low N alternative state also has transcriptional
consequences that result in a neuronal fate. These
addition factors also are responsible for stabilizing the
fate of the cell [1, 4, 5]. There is only limited evidence
that N regulates its own transcription or Dl transcription
[10, 11]. Such feedback is thought by most investigators
to be important to the population dynamics of the bio-
logical system and is characteristic of most regulatory
circuits [1, 12, 13]. The Dl ligand doesn’t appear to have
any downstream effects in the adjacent cell as the result of
N binding, but its inactivation by cleavage after binding is

important in the process [14]. While this system is
often termed “lateral inhibition” the mechanism of
the inhibition is not clear since Dl activates N, but
does not have any inhibitory effect on the cell it is
expressed in.
In addition to the molecular genetic work, mathemat-

ical and computational models of the N signaling have
been created [15–25]. Many of these models uses equa-
tions or algorithms to represent the interactions between
cells, although other approaches, such viewing the sys-
tem as a dynamic network, have been utilized. These
models replicate the in vivo pattern accurately and make
important contributions to the understanding of the
system, but model the development of fate choice within
a single cell, or the dynamics between cells that results
in the pattern within the system. No existing model
captures the dynamics that connect the underlying
molecular signaling pathway that produces the intercel-
lular interactions to the overall patterning of cells during
development.
We have built a fine-grained and hierarchical model

using Agent-Based Modeling (ABM) that reproduces
and assesses three levels of complexity: intracellular
dynamics, intercellular interactions, and system dynam-
ics [26–28]. Informed by the myriad molecular studies
done with the Notch pathway, we created agents that
mimic the actual cellular and protein components for a
population of cells in a sheet and that undergo transfor-
mations with each cycle of the model. We believe it is
necessary to include the intracellular components of the
system, since the dynamics of these components set up
the interaction between cells. The signaling pathways
within and between cells in our model interact in real
time to create a spatially correct field of neurons and
skin cells. As agents interact with each other, an evolving
dynamic picture of an emergent system can be observed
and analyzed. We developed tools to track the
stabilization of individual cell fate and the stable forma-
tion of pattern in the system and used these tools to
evaluate the contributions of individual signal compo-
nents to cell fate and system pattern. We altered both
the levels and timing of these components using model
features that control the production and transitions
between agents. Our model suggests that cell fate and
larger system pattern are generated through oscillations
of the number of N agents and that out of sync oscilla-
tions created by the stochastic nature of the model
produced alternative fates in neighboring cells. Each in-
dividual cell charts its own path to a cell fate choice, but
interactions between cells cement those cell fates and
the larger system pattern as the model progresses. The
model replicates a number of features of the biological
system and produces a number of testable hypotheses
that can be explored further in both in silico and in vivo.
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Fig. 1 The cellular events of N signaling pathway. The steps are (1) N
and Dl proteins are transcribed, translated and transported to the cell
membrane; (2) Dl undergoes an endocytic processing step to become
the ligand for N; (3) the Dl ligand and N receptor interact resulting in a
cleavage and endocytosis of a N fragment; (4) A second cleavage
releases a N product that is translocated to the nucleus

Reynolds et al. BMC Systems Biology            (2019) 13:7 Page 2 of 16



Results
Model development
To address the problem of multicellular patterning, we
chose to model the N signaling pathway described above
used since the current understanding of this pathway
has broad experimental support [1]. An attractive aspect
of using this signaling pathway in our modeling of this
problem is that there is a single central signaling compo-
nent, N, and its receptor. Both N and Dl are absolutely
required for cell fate, cell interaction and the larger pat-
tern. There is no cascade and the N signal in a cell is
not amplified at any step, therefore the exact level of N
protein controls cell fate. Using ABM, we can focus on
one product, and add or control effectors in a stepwise
fashion to see which are important to the overall pat-
terning. We describe the basic features of the model
below, with more details in the Methods.
Our agent-based model of the N signaling pathway

constructed in a NetLogo modeling environment allows
us to manipulate N and Dl and their transformations by
representing them as model agents within a defined
environment or space [29]. Typical of ABM techniques,
there is a discrete abstraction of time where a single tick
moves the model forward in its global progression. The
model has two distinct families of agents, structural and
active, that have different roles in the model. Agent
names are bolded throughout the paper and defined in
Table 1.
Structural agents remain fixed. In our model, a hex-

agonal cell is represented by chain of structural agents,
Mem, with each agent equivalent to a region of the lipid
membrane. An agent called Nuc defines space in the
center of the cell and the Mem and all other agents are
assigned as belonging to a particular Nuc (Fig. 2). A
two-dimensional array of these “cells” forms the model
space, which approximates the cell geometry observed at
this developmental stage [30]. Other models suggest that
the cellular geometry may be crucial for appropriate
patterning [31]. The array can be altered: structural vari-
ables developed for the model include cell and nucleus
radius, lipid-density, and the overall shape of the sheet.
The number of cells within a sheet can also be varied
easily within the model. For the experiments in this
paper, we ran the model with 77 cells. We chose this
number of cells since it was computationally tractable,
but also a model space where most of the cells were
surrounded by six other cells (rather than three or four
as seen near an edge). An average compute time for one
run of the model was about an hour.
The second type of agents are active components repre-

senting various states of N and Dl that model the steps
seen in Fig. 1. Agents Dl and N are generated at a variable
initial rate and tagged as belonging to each cell’s Nuc. The
N/Dl agents are assigned a random heading and move

towards Mem agents and transition to Nm and Dlm as
they associate with these agents (step 1). Both agents
move randomly between Mem agents after production.
Dlm is converted to an active form called Dlm’ at a vari-
able rate within the model (step 2). When Nm and Dlm’
agents are opposite each other on adjacent cells, Nm is
converted to Nc (the first cleavage step, step 3). The aver-
age time of the second cleavage step and subsequent mi-
gration of Nc to the nucleus (the conversion of Nc to Nn)
can also be varied within the model (step 4). The number
of Nn agents provides feedback on the system, upregulat-
ing N and downregulating Dl average transcription
settings.
Transitions between agents are mediated in various

ways within the model. N/Dl is converted to Nm/Dlm,
when they approach a Mem agent. Likewise, the Nm to
Nc transition occurs when a Nm and Dlm’ move to ad-
jacent Mems across from each other on the adjoining
cell. In other cases, transitions are generated by rates
that have stochastic features that model complex mo-
lecular interactions or transit in cell compartments. Such
stochastic features are a property of biological systems
and random elements of fate determination for the N
pathway have been confirmed in vivo [25]. For example,
the initial production of N and Dl are set as a variable
that creates a distribution of values around a mean. Nc
transitions to Nn using a random step feature with a
rate set as an average distribution. The transition from
Dlm to Dlm’ can be manipulated by a setting that cre-
ates an average time but not an exact time for the transi-
tion. The stochastic features of the model are produced
using pseudorandom number generator that is part of
the Netlogo programming language (see methods). To
prevent a simple buildup of agents over time, we also
have an age-out feature for all N and Dl agents. Agent
“death” is set relative to a birth date for an average num-
ber of ticks and then the agents are removed from the
model space. The age-out feature models the biological
lifespan of molecules. These transition variables can be
set initially within the NetLogo model or specified by a
driver program that directs multiple runs of the model.

Running the model
We can observe a single run of the model using the
NetLogo program; each agent has its own color designa-
tion and we can watch as the agents move within the
model space (Fig. 2). Generally speaking though, we per-
form multiple runs of the same experiment of the model
using a program that specifies a range of parameters and
distributes the model runs across a cluster of computers.
Production of agents, transitions, feedback and age-out
occur in a specific order for each tick of a model run.
The NetLogo program calculates two outputs from the
model runs: an integer count of Nn agents (the signal
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level-N count) in each cell produced as a ordered string
at each tick, and a raw count of the neurons at each tick.
Neurons are defined as having a zero Nn count, while
other cells are defined as nonneurons or skin cells.

Analysis of model data
A data logging mechanism stores the signal levels for
each cell at each tick to a text file as a number sequence.
Staggered rows that represent the cells with a sheet are
preserved in a two-dimensional hex matrix, creating a
sequential string that can be simply remapped into the
original structure (Fig. 3). The signal level is stored as
either a raw or scaled value. The scaled value uses a base
10 logarithmic equation to map the N level to one digit
with the special zero-signal case equating to zero (a 0 to

0, 1 thru 9 to 1, 10 thru 99 to 2, and so on), allowing us
to map large scale rather than small scale change. Cells
labeled as zero are designated as neurons for each tick
of the experiment. This scaling has the advantage of re-
ducing a large numeric value to a single character.
The dynamics of the cell population are analyzed first

by simply looking at the signal levels. A graphing func-
tion plots the number of cells that have a zero signal-
level (neuron) vs. ticks (time). Oscillation and then
stabilization of the zero signal population is a consistent
feature of many parameter settings within the model
(Fig. 4). To capture this feature of the model data, we
have developed a metric we call stabilization time. The
stabilization time is calculated by looking at the devi-
ation around the number of neurons at each time point

Fig. 3 Remapping from the model representation to a sequence. As the model runs, two types of information at each time point are collected: The
number of Nn agents in a given cell (signal strength, bottom number in each cell) and the position of that cell in the field (pattern, top number in
each cell). The scaled signal condenses the N level to the base 10 logarithm with the special zero-signal case equating to zero (a 0 to 0, 1 thru 9 to 1,
10 thru 99 to 2, etc)

Fig. 2 A NetLogo screen capture of the sheet of cells in the model space. The yellow agents are Mem and represent the membrane of the cell.
Nm agents are blue, and all Dl agents are red. The nucleus is delineated by a green circle with a white dot in it (representing the spatial location
where new agents are produced as part of the Netlogo programming environment). Nc agents are green and are outside the nucleus and the
Nn agents are also green but are within the nucleus. They accumulate in an arc just inside the nuclear
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over multiple time intervals. We calculate the standard
deviation starting from the end of the data and moving
towards the start. We define the stabilization time as the
place where the variation in the number of neurons goes
above one neuron deviation. In other words, the pattern
is only varying by one neuron or less per tick (Fig. 4).
The developing pattern can also be analyzed dynamic-

ally since the number string can be remapped in a visual
representation. It can also be reduced to a numerical
value to make comparisons easier. A roset pattern, a
central neuron surrounded by six epidermal cells in a
repeating pattern, is the goal developmental pattern for
the whole sheet of cells, with an optimal number of
rosettes of 27 or 28 for 77 cells. Using the string that
relates signal level to position, we defined rosettes as
neurons with six non-neuron neighbors, and then
accounted for edge effects by adding in edge neurons that
also had an edge base optimum of non-neuron neighbors.
Occasionally one imperfect rosette is generated at the
edge, but rosette counts that stabilized and were within
two neurons of the 27/28 optimum were consistently
found to have the correct pattern over a sample of the
data. Therefore, our measure of rosette counts is a good
proxy for overall pattern.
Once rosettes and stabilization times have been deter-

mined, these measures are displayed on color-coded
graphs with hot colors representing high numbers of
rosettes and high stabilization times and cool colors repre-
senting low numbers for these measures. In addition,
graphs that combine these measures were created to give
an overview by assigning category designations and colors.
In addition, dynamics can be measured by tracking change
of signal levels. Using the string that related signal level to

position, we can use a variation of Hamming distance
(derived from information theory) to measure the amount
of dis-similarity between two strings of codes at different
time points. In traditional hamming distance, two binary
codes are compared for differences and a count of these
differences becomes the distance between the codes. With
our approach, two strings are compared and a new
string is be generated that flags any differences with
an asterisk, representing where the two strings do not
match and retaining the character code when there is
no change. Thus, variation in time can be captured in
a progressive way and used to characterize model
stabilization during a run.

Model output-single runs
The model with the agents, transitions and features
described above produces a stable rosette pattern with a
variety of parameter settings (see below). In our observa-
tions of single model runs, the model produces an oscil-
lating neuron count that then stabilizes, locking the
system into the observed pattern (Fig. 5). During the os-
cillations, cell fate is changeable as the amount of Nn
varies. Notch and its downstream targets have been
shown to oscillate in vivo as well [32]. Cell interactions
produce a pattern that is constructed and deconstructed,
till a stable rosette pattern is produced. This is more
clearly illustrated using a measure that tracks changes in
cell fate (as determined by N level, neuron to skin or
skin to neuron) over the time frame of the model (Fig. 6).
As the run progresses, we see fewer changes in fate over
time, suggesting the system stabilizes in steps or regions.
Analysis of a subset of individual runs suggests that
areas with stable patterns develop and then influence

Fig. 4 Stabilization time metric. Stabilization points are defined as the earliest point where there is deviation of one neuron or less as indicated
by the red line
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the rest of the sheet of cells towards the optimum ros-
ette packing. So the fine grain interactions of the N and
Dl acting between cells generate the larger scale patterns
within the system.

Conditions for model stability and patterning
Experiments were run to understand how the levels
and timing of the components produce stable and
correct patterning. There were basic four parameters
that were varied in these initial experiments: initial
transcription rates for both N and Dl, which controls
the overall level of the components; and transition
time for Dlm to Dlm’, and transition time for Nc to
Nn, which controls the timing of component avail-
ability to the system. For each parameter set, 21–29
seeds were performed to assess the reproducibility of
the results. These are the 4 parameters that most
directly involve stochastic features of the model and
that can be specified within initial settings. The initial

transcription rates directly impact the level of the N
and Dl family of agents, while the two transition pa-
rameters impact the timing of events in the model.
Model features that are static and age-out were held
constant for these sets of runs. The settings for this
data set are summarized in Table 2.
The composite characteristics of all runs are shown in

Fig. 7 as histograms of all runs for stabilization time and
rosette count. The model “works” for a large group of
parameter settings (shown in yellow), where we define
working as having a less than 18,000 tick stabilization
time and a rosette count of greater than 25. In our initial
experiments, one set of parameters does not produce
stable or correctly patterned runs: the highest Nc to Nn
transition setting of 275. These experiments produce
runs that are inconsistent, with long stabilization times,
no stabilization, or low rosette counts (shown in light
blue). We do not present any further data on these set-
tings in the results.
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Fig. 5 Dynamics of a single model run. A histogram is created to capture the neuron count vs time (left) as shown above in Fig. 4 and a diagram
showing position can be constructed (right) from the N level and positional data information. White represents neurons and black, skin cells
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Fig. 6 Measure of cell fate change over time during a model run. This analysis compares the changes in cell fate using a modification of Hamming
distance to compare strings at adjacent time points
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The other parameter settings do produce some or all
runs where the model works. The shortest stabilization
time is about 2500 ticks and this end of the data repre-
sents both runs that stabilize with the correct number
and some that do not. There is a peak of runs that
stabilize very late or not at all (about 30%). If a run
doesn’t reach stability by 20,000 ticks, it is assigned that
value. These runs are difficult to assess as a group since
our rosette measure may inaccurately assess the pattern
for runs that are still oscillating at the end of the 20,000
tick time frame. By looking at a sample of runs in this
peak, we are convinced that some of these appear to
converge on a stabilization time with good pattern
beyond the 20,000 tick time frame of the experiment. In
addition, there are some long time frame runs that
appear to never stabilize and continue to oscillate with
no suggestion of stability or that crash to produce either
no neurons or no skin cells. The distribution of rosette
then is skewed to the right, since many runs produce
correct pattern.
Figure 8 summarizes the data for experiments with 4 pa-

rameters. Stability time is shown at the top (Fig. 8a, blue is
low stabilization time and red is high) and the middle set of
graphs shows rosette counts (Fig. 8b, blue is low rosette
counts and red is high). The bottom set of graphs shows
the runs assigned into categories with white representing
runs that fail to stabilize within 18,000 time, light green
representing runs that stabilize with the incorrect number

of rosettes (≤ 25), and dark green representing runs that
stabilize with the correct number of rosettes. We define the
dark green parameter settings as successful model runs-the
model “works” for these parameter sets. We looked at the
variability between runs/seeds for these successful param-
eter settings and found that in most cases, there is little
variability. A successful run is reproducible, although the
time it takes to stabilize may vary a little; the standard devi-
ation for stabilization time for these experiments is less
than 1000 ticks.
In comparing the three sets of graphs, there are several

clear conclusions from the data. First, stability and pat-
tern are not strictly correlated. High rosette pattern is
found with a range of stabilization times. Some very
short stabilization times do not produce good pattern.
Systems that go through at least a few oscillations of Nn
levels have a better probability of developing proper
pattern. Second, stabilization time is strongly altered by
the parameter settings, however many of the parameter
sets generate rosette numbers representative of a proper
pattern. It seems as if the model drives towards correct
pattern and the parameter settings may largely deter-
mine when it gets to a stable place. Third, initial N levels
are more important in determining a successful run than
initial Dl levels, although both are important for
stabilization time and pattern. Finally, the model has a
sweet spot for the various parameters (best observed
using Fig. 8c). For initial settings of N and Dl, the spot is

Table 2 Model parameter settings

Parameter varied Representation in the model Settings examined

N N agents initially transcribed 8 to 24 agents in increments of 2

Dl Dl agents initially transcribed 8 to 24 agents in increments of 2

Dlm to Dlm’ Transition from form associated with membrane to form that interacts with N 0, 50, 100, 150 ticks

Nc to Nn Transition from cleaved form to nuclear form 50, 75, 175, 225, 275 ticks

Agents are represented in bold print

Fig. 7 Overall characteristics of runs with variations of four parameter settings. The histogram on the left shows stabilization time for all runs,
while the histogram on the right shows rosette counts for all runs
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on the diagonal, where there is close to equal levels of N
and Dl. For the Nc to Nn transition, intermediate values
again are best. Dlm to Dlm’ transition is best with lower
values. This tells us that there is an optimum timing for
the system that involves all parameters.
The most dramatic effect on the model is obtained by

varying the timing of the transition between Nc and Nn.
This parameter would alter the timing of the availability
of Nn to provide feedback within the cell and presum-
ably alter the timing of oscillations in the system. Transi-
tion times of 125 and 175 ticks produce an overall sweet
spot for the model. Decreasing transition time to 75 pro-
duces long stabilization times. Increasing transition time
to 225 ticks only works when Nn initial levels are high.
This reinforces our previous idea that longer transition
times may work less well as they approach Nn age-out
settings of 350.
The initial levels of both N and Dl are important since

their agent numbers determine the probability of the Nm
cleavage and subsequent effects on downstream transcrip-
tion of the agent through feedback. The initial level is
modified by the level of Nn at each tick. The best pattern
and stabilization times are produced when initial N is low
and initial Dl is greater than (for 75,125) or equal to (for
175, 225) initial N. It would seem that the level of initial N
is most influential in setting up the stability properties for
the system. However, the levels of initial Dl are not com-
pletely without consequence. Increasing amounts of initial
Dl relative to initial N generates problems with pattern as
seen in the higher Nc to Nn transition times.
The timing of Dlm’ availability controlled by the Dlm

to Dlm’ transition time seems to somewhat impact
stabilization time, with little impact on pattern. This was
confirmed by looking at a small number of individual
runs, most of which stabilize beyond 18,000 ticks with
the proper pattern. The model works best when Dlm’ is
immediately available with longer availability times in-
creasing model stability times.
An exception to these trends is present when both

transition times are low (top left in Fig. 8c). High initial
N requires less initial Dl to work. This is the only set of
parameters where the majority of white box runs fail to
stabilize based on a sampling of a small number of runs.

a

b

c

Fig. 8 Data set varying four different parameters. For each individual
graphs, initial N setting is on the y axis and initial Dl setting is on
the x axis. Progression left to right for each row is increasing Nc to
Nn transition time. Progression from top to bottom represents
increasing Dlm to Dlm’ transition time. a stability time (blue is low
stabilization time and red is high) b rosette counts (blue is low
rosette counts and red is high). c category assignments (white
represents runs that fail to stabilize within 18,000 time, light green
represents runs that stabilize with the incorrect number of rosettes
(< 25), and dark green representing runs that stabilize with the
correct number of rosettes
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Feedback within the model is essential
Feedback is an essential feature of the model. In the iter-
ation of the model that produces successful stability and
pattern, production of new agents is dependent of the
level of Nn agents. High number increases N production
and decrease Dl transcription and visa-versa. We used a
subset of parameter settings to look at the impact of this
feedback in the model. This is easy to do since the code
that specifies these interactions can simply be removed.
The only version of the model that works properly in-
volves feedback of Nn agent levels to the producer that
controls both N and Dl transcription. The results are
presented in Table 3 below. When either feedback is
removed, no or low numbers of neurons are present in
the cell sheet. It may be that N or Dl regulation may not
be important in a given cell, but is necessary within the
system to produce the neuron fate.

Discussion
We have created an agent-based model (ABM) that simu-
lates the molecular components for the N signaling path-
way as agents acting within a spatial representation of a
cell. Using a set of assessment tools, we show that the
current model accurately reproduces the rosette pattern
of neurons and skin cells in the system over a wide set of
parameters and looked at the impact of levels, timing and
feedback for the N and Dl components of the model. The
data presented in this paper looks at aggregated aspects of
the system, like number of neurons and pattern.
We can postulate from our data the likely events that

lead to larger fate decisions (Fig. 9). At the first level of
complexity, initial values of N and Dl produce a certain
number of Nn that turn up N and down Dl in each cell
across the grid. As Nn numbers climb, Dl components
decrease in each cell across the grid. Without Dlm’ in ad-
jacent cells, Nm is not converted to Nc, and Nn numbers
decline and it ages out, which leads to decreased produc-
tion of N and increased production of Dl. Once the levels
of N and Dl even up, the process starts again. We expect
that as the process goes on, adjacent cells become out of
sync in terms of their oscillations. The stochastic nature of
the system would ensure that the behavior in each cell is
not identical, leading to this asynchrony. A cell (call it
cell1) neighboring a cell with high N (cell 2) is more likely
to become a neuron, since the high N cell would have low

Dl. Cell 1 then would soon develop low levels of N and
high levels of Dl. After a few rounds of oscillation, these
patterns become reinforced and fate change becomes less
likely (As observed in Fig. 6). As cell 1 accumulates more
neighbors that have high N values (cells 3–6) and low Dl
values, both cell types become locked in. The arrangement
of one in the middle of six would appear to optimize the
self-patterning of the system. Based on this model of
events, the “lateral inhibition” that is often cited as a hall-
mark of this model is really the absence of Dl on adjacent
cells rather than any inhibitory property of Dl. These hy-
potheses can be directly tested in our existing model by
looking at the oscillation patterns of individual cells under
different conditions and that work is in progress.
We expected that the initial rates of both N and Dl

agents would be an important feature of the model since
the level of these protein products in the biological
system would determine the probability of the N cleav-
age and subsequent effects on downstream transcription.
Based on the hypothesis presented above, different ratios
of N and Dl agents would change the timing of the os-
cillations, as well as having some impact on pattern. In-
deed, increased N levels result in longer stabilization
times and larger oscillations. For a given level of N, Dl
level does not have a big impact on stability or pattern,
except when there is a considerable mismatch in levels.
The Nc to Nn transition was most influential in the

outcomes from the model, suggesting timing is import-
ant to the formation of system pattern. Biologically, the
transition Nc to Nn consists of two cleavages, one at the
cell membrane and a second an endocytic compartment
that releases a fragment that can then enter the nucleus
and alter transcription [21, 22]. We simply represented
those multiple steps as one transition, and represented
this transition as a timing variable. This parameter inter-
acts with other features of the model in interesting ways.
Long transition times interfere with the action of N
and essentially limit feedback in the model. Short
transition times cause faster oscillations, but also long
stability times, most likely because the chance for
substantial asynchrony to develop between cells would
be limited and the system swings back and forth with
little progress in fate assignment. Within the sweet
spot for this transition, we see more of the effects of
other parameters.

Table 3 Results of Feedback experiments

Experiment Outcome

Nn turns up N transcription and turns down Dl transcription Good stability and pattern across a wide set of parameters

Nn turns up N transcription only Model crashes with 0 neuron count and fails to oscillate

Nn turns down Dl transcription only Low neuron and rosette count (< 5), no oscillating runs that stabilize

No feedback Model crashes with 0 neuron count and fails to oscillate

Agents are represented in bold print
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Feedback is absolutely necessary for the model to
work. This is expected since it is the chief mechanism
by which change in the system occurs, but our model
suggests that feedback is required for both N and Dl
components. Although, there is limited evidence that N
regulates its own transcription or Dl transcription, such
feedback has been seen in a few instances and has been
postulated to part of this regulatory circuit [1, 10–13].
Feedback to N or Dl transcription may be directly per-
formed by N or by one of the downstream genes, but
our model confirms its importance for the biological
decision-making carried out by the system.

Model validation
Many of the experiments that have been done over the
last 20 years have been aimed at discovering the bio-
logical players in the system and the downstream com-
ponents necessary for the expression of cell fate. The
focus has been on the cell as the unit of function, and
molecular biology experiments have created complete
loss of function or gain of function for the system. In
most cases, the pattern has been completely disrupted,
generating all neurons or all skin cells. Less emphasis
has been placed on altered pattern from these early
developmental steps.
However, several outcomes of this model are sup-

ported by the existing literature. The model mirrors the
findings of much of the literature that manipulation of
N levels and its processing alone can impact both fate
and pattern. The stoichiometric nature of the N pathway
had been postulated from genetic experiments since the
N locus is both haplo-insufficient and triplo-mutant
(both ½ dose and 3 doses lead to a altered phenotype)
and our model findings are consistent with that inter-
pretation [1]. Genetic data suggests that a ratio of the
levels of the N ligand and its Dl receptor is important in
fate and in establishing an asymmetry in the levels of

these proteins that develop over time through feedback
loops [1]. Our model is consistent with the idea that
both initial and relative levels of these proteins over time
determine both fate and pattern and that the process is
dependent on feedback. Our model also produces oscil-
lations of these components. These oscillations have
been observed in the biological system for N protein
levels and downstream targets [32, 33].
We believe there are further experiments that could

be done to validate the model. Levels of N and Dl pro-
tein might be controlled through RNAi constructs in a
mutant background or using antibodies or small mole-
cules that modulate signaling [33–36]. There are chem-
ical inhibitors of the proteases involved in the cleavage
step that could be used at varying dosages to produce
alterations in the efficiency of the process [37, 38]. The
pattern can be monitored using antibodies targeted at
various nervous system molecules and a technique has
been developed to look at oscillations of the downstream
proteins Hes 1 and 7 [33]. These types of experiments
are necessary for further validation of the model. The N
signaling system produces other patterns beside rosettes
and one of the challenges will be to see if our model can
also produce those other patterns and how we might
produce them with the basic components we have
already incorporated.

How our model compares to other models
Several models of the Notch signaling pathway have been
created previously. Waddington was one of the first to
look conceptually at the process of fate determination as
that of the cell moving on an energy-landscape molded by
the effects of the transcribing genome [15, 16]. Wadding-
ton represented these influences as a system of differential
equations implementing the continuous effects of the vari-
ous interacting genes. Many of the current models have
followed suit, by implementing individual cells in the

Fig. 9 Interactions within model that lead to stabilized fate
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population as compartments within a differential equation
system. The Collier model is the most successful of these
recent efforts with the general idea of the model modified
and improved by others [17–19, 24, 39, 40]. Initially ana-
lytical and numerical analyses focused on system dynam-
ics while some later work extended the Collier results,
focusing on the molecular interactions between cell com-
partments [18]. The Marnellos group relied exclusively on
numerical analysis, but used an evolutionary optimization
technique to tune the model dynamics [19]. Finally, a
modeling approach has been used to simulate genetic ex-
pression state propagation across cell populations in the
spinal nervous system during vertebrate development
[41]. All of these models show proper pattern of the basic
rosette structure. A recent modification has allowed the
model to be extended to produce other patterns associ-
ated with N signaling [24]. Other approaches to N path-
way modeling include gene-regulatory networks [20, 21],
extended Boolean Networks [22], and discrete stochastic
processes [23]. One recent model that uses a differential
equation approach takes into account the volume and
geometry of the cells making up the system and shows the
impact of these factors in producing pattern [31].
While all of these models represent the patterning of

the N signaling system well, they focus on either the
interactions between cells and those pattern dynamics,
or they look at the development of fate choice within
the cell. None of them integrate the three levels of hier-
archy inherent in our model. These models are also
harder to manipulate than ours, often requiring altered
or additional equations to ask experimental questions.
Some of the models assume a role for inhibition in the
model, while our model allows the molecular interactions
to illuminate the process. Our modeling environment is
robust and does not require a precise description as seen
in the differential equation based systems. Overall, our
model represents the biology better, where the overall
behavior of molecules is not precise and systems can often
handle some deviation.
Several authors have suggested that ABM may be a

fruitful approach to modeling biological systems. Walker
and Southgate (2009) suggest that spatially hierarchical
models such as agent-based systems are a good approach
to modeling biological phenomena at multiple scales
[28]. However, they state that few multi-scale models
had been developed as of that time. Bartocci and Lió
(2016) suggest that agent-based models are well suited
to understanding how cellular interactions produce sys-
tems characteristics [42]. Richmond et al. (2010) in an
earlier paper had made similar points about the utility of
agent-based models and developed a modeling environ-
ment using an agent-based program call FLAME that
runs on both single and clustered systems and provides
a template for these types of modeling experiments [43].

Our choice of ABM and the NetLogo programming
environment embrace the advantages laid out by the au-
thors in these papers and facilitates a multi-scale analysis
of this developmental process. It allows us to easily ma-
nipulate components and the processing steps associated
with the pathway, and make it easy to add more steps
into the model. For example, we have already built the
model with Nm and Dlm’ cis inhibition interactions that
are observed in the biological system [44]. Dl in this case
acts to sequester N from intramembrane cleavage, essen-
tially making too much Dl a detriment to the system.
We look forward to confirming additional biological fea-
tures in this system.
Our model is based on an understanding of the com-

ponents and their actions discovered through traditional
methods. It is strongly based in the biological literature,
although we have made choices and assumptions on im-
plementation. The hypothesis-driven framework creates
an internalized reconstruction of the subcellular process
and an external analysis of the system dynamics that al-
lows for an integrated exploration of the role of the sub-
cellular in the multicellular pattern. In addition, a fuller
understanding and a formal description of how our model
generates this dynamic pattern may inform computation
problems. The N signaling system and its biological ap-
proach to pattern formation inspired an algorithm that ad-
dresses a key problem in distributed programming [25].
The flow of information between individual components
in a distributed system as presented by our model may be
used in a similar way to approach these problems in com-
putational systems.

Conclusions
We have created an agent-based model that simulates
the molecular components of the N signaling pathway
within representational cells capable of creating a multi-
cellular pattern consistent with what is observed in the
biological system. The model has 3 levels of complexity:
the specific timing and level of each molecular compo-
nent within each cell, the interactions between cells, and
the formation of pattern across the system. The signaling
pathways within and between cells in our model interact
in real time to create a spatially correct field of neurons
and skin cells. The model produces a stable correct
pattern for the system under a variety of model param-
eter settings. We found that the dynamic timing and
availability of N and Dl components of the system were
central to the formation of a cell fate and a correct and
stable pattern. Levels of the Nn agent oscillate up and
down within individual cells and in the system. Positive
feedback to N levels and negative feedback on Dl levels
provided by N levels over time are essential to the
model. According to our model, cells that have high
levels of N and low levels of Dl engage with neighbors
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that have low or no N and high Dl levels, stabilizing these
cells into their fate. The timing of oscillations between
neighboring cells most likely establish stable fate at
the middle level of complexity and the construction
and deconstruction of pattern is necessary for the
whole field to stabilize correctly, since model runs
that have short stabilization times often do not have
correct pattern. Therefore, the components N and Dl
control cell fate, neighboring cell fate, and the larger
pattern. This model can be used to make predictions
about the N signaling system, but can also be used to
elucidate general rules of biological self-patterning
and decision-making.

Methods
Model elements
NetLogo is a modeling tool developed following in the long
tradition of Logo and directly descended from StarLogo
[16, 24]. Conceptually, NetLogo allows for the visualization
of agents that are autonomous software entities embodied
in a virtual environment that are capable of navigating,
sensing, and manipulating that environment, including
other agents. These agents are called turtles, following from
Logo, but can be assigned to a specific population called a
breed. Agents are akin to objects in an Object Oriented
(OO) language. These populations can be called upon to
perform different actions and agents can create other
agents, allowing for a mechanism fundamental to the
model where one agent produces a range of agents to con-
struct a sophisticated architecture. Globals set up the initial
starting features of the environment and the placement of
the agents within that environment as well as configure
model output. The program is constructed in a modular
fashion as described in the following sections. The
complete code for the model and driver and the data for
the experiments in the paper can be found in supporting
files as follows: Additional files 1, 2, 3, 4, 5 and 6.

Globals
There are four categories of globals: configuration,
which sets up the initial structural features of the
model environment such as cell radius and unit move
based on that radius; model, which governs the ac-
tions of the agents within the model; general, which
sets up how information is collected during model
runs; and reporting, which directs the model output.

Agents
The model is constructed from four general types of agents
(Nuc, Mem, Dl and N) with a total of nine different breeds
within the programming environment (Table 1). Nuc and
Mem are structural components that provide the major

organizing features for the model. The Nuc breed provides
points of orientation for cells in the structure and act as
factories for production of Mem, Dl, and N agents. These
agents are then linked with their progenitor Nuc (their
parent). The Mem breed is more complex. The Mem rep-
resent the lipid membrane that form the walls of the cells
around a parent nucleus, but also form the basis of loca-
tions within cells and in interactions between cells. The
placement of the Mem is determined by a cell radius
setting from the configuration global, and the number and
spacing of the Mem agents can be altered to impact the
granularity of the model. The Nuc and Mem agents are
put into place during setup procedures and do not change
during the model run. N and Dl agents are breeds that are
dynamically created and destroyed during model run, pro-
viding the signaling mechanisms in the model (Table 1).
There are 3 different Dl category breeds (Dl, Dlm, Dlm’)
and 4 different N category breeds (N, Nm, Nc, Nn) that
represent the transitions of these proteins during signaling
(Table 1). N and Dl agents move through the model envir-
onment with their location in the model tracked and their
spatial association with other agents often results in one
breed being transformed into another.

Procedures within the model
Setup
The model is initiated through a setup procedure that clears
the model space, and initiates globals and model settings
that are variable. In general, the model takes direction from
a head program (described below) that defines specific pa-
rameters and the range of parameters that will be tested
within an “experiment” and then initiates the Go command
below. Each experiment is given a unique designation or
seed. Setup then initiates the Nuc breed and lays out a
sheet of cells with Nuc and their children Mem agents in a
hexagonal pattern. Relative position of each cell is deter-
mined in the sheet via the build-neighbors command that
groups a set of detailed commands responsible for assign-
ing agents to a specific parent Nuc and then determining
neighboring agents and their parents. Action within the
model takes place within the context of this sheet of cells.
Different layout commands implement cell topology within
the sheet, nuclear topology and cell radius.

Go
Once the model is setup, a Go command initiates each
model run. The Go procedure tells the model to perform
several steps:

1. Remove components that have hit an age limit.
2. Ask each nucleus to produce some number of Dl

and N agents.
3. Move existing Dl and N breeds within the system,

depending on their type.
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4. Allow agents to manipulate neighboring agents if
applicable.

5. Increment time. Time begins for the model at t = 0.

Step 1: The age-limit (age-out) for N and Dl agents
are set as one of the initial model parameters. This age
limit removes agents from the system and is dependent
on breed type. Thus, when a Dl agent is created the
clock begins and is never reset even though it goes
through a set of breed transformations. Regular destruc-
tion of agents is essential for the model to run, since the
definitions within the model for a neuron is based on a
zero N count, which would never be achieved if compo-
nents did not “age-out.”
Step 2: At each tick, additional N and Dl agents are

added to the system. The initial agents are Dl or N
breeds. There is an initial transcription setting for these
components specified by the head program and then
each additional tick brings a reassessment of the tran-
scription rate based on the amount of Nn. The initial
setting establishes a mean for production of agents, and
variation around that mean is based the number of Nn
and on a pseudorandom number generator that sets the
value of that rate (described below).
Step 3: Agents move and transition between breeds.

a. The N and Dl agents move in a stepwise fashion to
the membrane, moving one patch space per tick
with the distance defined by the cell and nucleus
radius.

b. When N and Dl agents move within one patch
distance occupied by a Mem agent, they transition
to Nm or Dlm respectively.

c. Dlm agents transitions to the Dlm’ breed based on
a parameter setting for the transition

d. Nm, Dlm or Dlm’ agents move laterally from Mem
agent to Mem agent.

e. Once Nm is converted to Nc (see step 4), Nc then
moves from the membrane to the nucleus. These
movements are encoded as a diffuse-proteins
command, where each agent has code related to
their movement (See below).

f. Nc agent within 1 patch of the nucleus transition to
Nn.

Step 4: This is the most complex part of the model.
In the current iteration of the model, this step is
about the transition of Nm to Nc. In our implemen-
tation, the transition is coded to look at positions of
Dl associated with Mem agents on a neighboring cell
in relation to the position of N associated with Mem
agents on the home cell. If a Dlm’ is within a defined
set of locations across from a Nm agent, then Nm
transitions to Nc.

Step 5: This step moves forward the model timing
mechanism and assigns a tick number to all events
within the model.

Stochastic features of the model
The model is designed to implement random features to
ensure that a regular ordering of events does not intro-
duce artifacts into the results and to match the stochastic
nature of the biological system. The stochastic features
rely on a pseudorandom number generator using the
Mersene-Twister algorithm implemented in NetLogo [45].
Random agent selection is implemented when a specific
set of agents is required to act, and randomized action
selection is implemented when there is a range of possible
choices. Random agent selection is used primarily to en-
sure that order of agent selection does not bias the results
in the favor of one agent or another based on one agent
always performing its action first. Random action selection
is based on the notion that proteins have the Markov
property in that they do not retain a memory of previous
actions upon which to make future decisions beyond their
current state. Through a combination of these two ran-
dom features, the model should prevent errors from being
introduced due to one component having greater privi-
leged over other competing components.
Much of the biological “noise” of the model is imple-

mented using the random command feature of NetLogo.
Each run of the model is seeded, which supplies a series
of pseudorandom values that are used to generate vari-
able parameters of the model. Parameters varied in this
paper have some “noise” incorporated. Initial transcrip-
tion and subsequent transcription rates of N and Dl are
randomly generated around a mean setting. Transition
between Dlm and Dlm’ has similar stochastic compo-
nents. The movement of Nc towards the Nuc has a
random component since Nc agents use the diffuse-pro-
tein command for movement. This command directs
movement towards the nucleus based on a Gaussian dis-
tribution around the parameter setting for the Nc to Nn
transition.

Driver program
A driver program provides an isolated execution envir-
onment between individual runs, stores model output as
a set of nested directories based on the parameter space,
and captures results of how the model was run, to allow
for later examination and confirmation of the execution
environment. The driver program functions by running
and manipulating the model in headless-mode (without
visualization) within the Java Virtual Machine (JVM),
which is a designed feature of NetLogo. Once the JVM
is started, Java classes are loaded into the environment,
allowing the driver to load the model as if a human user
were working with the software directly. Once running,
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the driver iterates, in a nested order, the five parameters
we varied in this paper: Notch transcription initial rate,
Delta transcription initial rate, Delta membrane trans-
form time, cleaved Notch diffusion time, and random
seed. This implementation starts with a directory named
for the first value of notch transcription initial rate, which
will contain all other combinations of the remaining pa-
rameters. At the bottom of the directory structure is a dir-
ectory identifying the random seed. The nested directory
structure can be later merged with similarly structured
directories. This allows for a larger data-set to be built
incrementally from small sets of data. This also allows for
a common structure to analyze and aggregate data for
later assessment of model behavior and performance.

Output from the model and measures
Data logging
From each model run, two files are generated: notch-
NucCounts.txt, and neuronCnts.txt. The file notchNuc-
Counts.txt contains the individual cell signal levels. The
file neuronCnts.txt contains the count of neurons (based
on a zero signal-level metric) of the system for each time
tick as two columns. These basic files are then manipu-
lated to produce the seed or aggregated data. This data
then is pulled into graphing programs to create the
graphs represented in this manuscript. See Additional
file 6 for more information.

Stabilization time
This measure is determined using neuronCnts.txt and
scanning from the last time point to identify the place
where the neuron count for a given run does not vary by
more than one neuron. The earliest tick frame where
that occurs is the stabilization time.

Difference assessments
Difference assessment provides a different perspective on
stabilization of the model. Each tick produces a string of
data that catalogues the number of Nn agents in the each
cell, notchNucCounts.txt. The strings are compared using
a Hamming distance function. The number of changes
over time is then graphed. Changes over time can be
mapped for an individual run or an aggregate set of runs.

Pattern
Pattern is assessed using a rosette count. For a rosette to
be tallied, a neuron must have 6 neighbors that are skin
cells, except in the case of edge neurons, which have an
expected number of neighbors based on their position.
For every cell, the numbers of the surrounding cells are
catalogued and then the comparisons are made on a tick
by tick basis or at the time end point of 20,000 ticks.

Category assignments
Category assignments are written as a set of if statements:

Step 1. Is the average stability time less than or equal
to 18,000, goes to Step 2

If not goes to cat 3, white boxes
Step 2. Is the rosette count greater than 25, goes to

Step 3
If not goes to cat 2, light green boxes
Step 3 All remaining run are assigned cat 1, dark green

boxes

Graphing
Graphs are produced using Mathematica or Gnuplot. In-
dividual graphs for experiments are assembled into a grid.

Additional files

Additional file 1: Netlogo Model. (TXT 28 kb)

Additional file 2: Driver Program. (TXT 10 kb)

Additional file 3: Stabilization Data (aggregated) for all parameter sets.
(CSV 731 kb)

Additional file 4: Rosette Counts (aggregated) for all parameter sets.
(CSV 641 kb)

Additional file 5: Hamming Statistics for all parameter sets. (CSV 145 kb)

Additional file 6: Data Paths for Model Analysis. (PDF 111 kb)
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