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Abstract

Background: During the identification of potential candidates, computational prediction of drug-target
interactions (DTIs) is important to subsequent expensive validation in wet-lab. DTI screening considers four
scenarios, depending on whether the drug is an existing or a new drug and whether the target is an
existing or a new target. However, existing approaches have the following limitations. First, only a few of
them can address the most difficult scenario (i.e., predicting interactions between new drugs and new targets). More
importantly, none of the existing approaches could provide the explicit information for understanding the mechanism
of forming interactions, such as the drug-target feature pairs contributing to the interactions.

Results: In this paper, we propose a Triple Matrix Factorization-based model (TMF) to tackle these problems. Compared
with former state-of-the-art predictive methods, TMF demonstrates its significant superiority by assessing the predictions
on four benchmark datasets over four kinds of screening scenarios. Also, it exhibits its outperformance by
validating predicted novel interactions. More importantly, by using PubChem fingerprints of chemical structures
as drug features and occurring frequencies of amino acid trimer as protein features, TMF shows its ability to find
out the features determining interactions, including dominant feature pairs, frequently occurring substructures,
and conserved triplet of amino acids.

Conclusions: Our TMF provides a unified framework of DTI prediction for all the screening scenarios. It also
presents a new insight for the underlying mechanism of DTIs by indicating dominant features, which play
important roles in the forming of DTI.
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Background
Identifying drug-target interactions (DTIs) is a crucial,
but costly and time-consuming step in drug discovery,
such as drug repositioning [1] and screening [2].
Computational methods (e.g. machine learning) play
an important role to output interaction candidates for
further validation in wet-lab experiments [1].
In general, there are four scenarios of screening DTIs

[3], corresponding to drug repositioning, phenotypic
screening, target-based screening as well as novel

chemical compound-protein interaction prediction
(Fig. 1). The first scenario (S1), predicting interactions
between known drugs and known targets, accounts for
drug-repositioning which tends to reuse or repurpose
existing drugs on existing targets. The second scenar-
ios (S2) accounts for testing new drugs on existing tar-
gets based phenotype approaches, while the third one
(S3) accounts for applying existing drugs for a newly
discovered target. The last scenario (S4), the most dif-
ficult case, accounts for screening the pairwise inter-
acting candidates between newly discovered chemical
compounds (drugs) and proteins (new targets).* Correspondence: jianyushi@nwpu.edu.cn
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Many, if not all, proposed computational approaches are
based on machine learning. Their common fundamental
assumption is that similar drugs tend to interact with simi-
lar targets. In terms of model type, the existing approaches
can be roughly categorized into three groups: classification,
network inference, and matrix factorization-based.
The classification-based models can further split into

local classification model (LCM) and global classifica-
tion model (GCM). For S2, by treating the drugs inter-
acting and not interacting with a specific target as
positives and negatives respectively, LCM builds a clas-
sifier to determine whether a given drug likely inter-
acts with the target or not [4, 5]. LCM needs to build a
set of separate classifiers for known targets. LCM usu-
ally requires different implementations for S3 and S1,
of which the former is symmetric to S2 while the latter
is the combination of S2 and S3. It cannot directly
handle S4 because of no interaction to train in S4.
More importantly, LCM cannot represent the relation-
ship between the targets or the drugs (i.e., difficult to
identify common or related features of the drugs (tar-
gets) that interact with the same target (drug)). Its ex-
tension provides an initial attempt to captures this
relationship via the concept of a “super” operator (i.e.,
cluster the drugs/targets) [6]. In contrast, regarding
the drug-target pairs having known interactions as
positives and other pairs as negatives, GCM builds
only one classifier, (such as [3, 5, 7–9]) based on the
assumption that interactions and non-interactions are
statistically separable and provides a “one-size-fits-all”
approach for all predicting scenarios. However, GCM
cannot represent the relationship between the targets
or the drugs as well. Besides, the complexity of GCM
is high because of tensor product-based similarity cal-
culations or high-dimensional concatenate feature
vectors. In general, the classification-based models
are hardly able to capture the underlying structure

among drug-target pairs (approved interactions and
unknown pairs).
In fact, the interactions between drugs and targets

are not independent, but show a significant relation-
ship, which can be represented as a bi-partite network
[10]. This network information derived from the es-
sence of drug-target interactions could be utilized.
Representing a set of DTIs as a bi-partite network,
existing models based on network inference (e.g. NBI
[11]) transform DTI prediction to link prediction be-
tween graph nodes. NBI utilizes two-step resource al-
location to infer the potential links between nodes.
However, it relies only on the local or the first-order
topology of nodes and tend to completely bias to the
high-degree nodes [9]. Besides, it cannot predict inter-
actions for the cases of drug-target pairs without
known reachable paths in the network, which is just
one of intrinsic properties of DTI network containing
isolated subnetworks [10]. These cases are come from
S2, S3 and S4, and partially from S1. Heterogeneous
network is a better promising model than the model
based on resource allocation. Generally, a heteroge-
neous network is constructed by a DTI network and
two additional networks generated by pairwise drug
similarities and pairwise target similarities respectively.
Random Walk with Restart was proposed to infer the
potential links between drug nodes and target nodes
[12, 13]. Nevertheless, existing methods based on het-
erogeneous network require seed nodes (both known
drugs and known targets) which are hard to define ap-
propriately in S4.
The models based on matrix factorization, such as

BMF2K [14], CMF [15], NRLMF [16], provide an in-
spiring approach to capture the globally structural in-
formation between drug-target interactions. They
project drugs and targets into a common low-rank fea-
ture space (usually called pharmacological space) ac-
cording to drug similarity matrix and target similarity
matrix. However, these models cannot explicitly indi-
cate what features of drugs and targets significantly
occur in interactions and non-interactions. Also, among
them, only BMF2K can handle all four predicting scenar-
ios. Neither CMF nor NRLMF can handle S4.
In drug design, pharmacologists are more concerned

about the features that determinate or contribute to
the interactions between drugs and targets. Especially,
they prefer the pairwise features between drugs and
targets in interactions, the shared features of drugs
interacting with a common target and the shared fea-
tures of targets interacting with common drugs. Some
previous works have attempted to build the factor
matrix to guide the prediction of drug-ligand interactions
[17, 18], when 3D structures of targets are available. How-
ever, the availability is usually limited, especially for

Fig. 1 Illustration of four scenarios of screening DTIs. Circle nodes
and rounded square nodes denote drugs and target respectively.
Nodes d1, d2, d3 and d4 are known drugs and dx is a new chemical
compound. Nodes t1, t2, and t3 are known targets and dy is the
new protein. Solid lines linking nodes represent drug-target
interactions. Dotted lines with labels indicate the scenarios
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membrane proteins (e.g. GPCR and Ion Channel), which
are the great majority of targets.
In this paper, we propose a triple matrix factorization

(TMF) to capture the relationship between drug-target
pairs in the latent pharmacological space. TMF enables
us to build a unified solution of predicting DTI in all
the four scenarios (Fig. 1). More importantly, it is able
to indicate how often a pair of drug feature-target fea-
ture occurs in interactions or non-interactions, what
the shared features of drugs interacting with a com-
mon target are, and what the shared features of targets
interacting with a common drug are. The effectiveness
of TMF is first demonstrated by comparing other
state-of-the-art approaches on the benchmark of DTI
datasets over both cross-validation in all the four sce-
narios and novel prediction, which deduces potential
DTIs for drug repositioning. Then, another advantage
of TMF is demonstrated by a case study, which identi-
fies the common features of drugs sharing a target, the
common features of target sharing a drug, as well as
the crucial pairs between drug features and target fea-
tures according to their occurrence in interactions and
non-interactions.

Methods
Dataset
The DTI benchmark used in the following experiments
was original constructed by Yamanishi et al. [19] and
widely used in other sequential works [3, 7, 8, 14–16].
In terms of the types of targets in KEGG, it contains
four datasets, including Enzymes (EN), Ion Channels
(IC), G-Protein Coupled Receptors (GPCR), and Nu-
clear Receptors (NR). Table 1 shows their brief statis-
tics. Each dataset contains three types of entries: the
observed DTIs, the pairwise drug similarities, and the
pairwise target similarities. They were organized into a
DTI adjacent matrix, a drug similarity matrix and a target
similarity matrix respectively and freely available at http://
web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

Problem formulation
Given m drugs denoted as D = {d1, d2,…, dm}, n targets
denoted as T = {t1, t2,…, tn}, and a set of interactions
between them. These interactions are organized as the
m × n DTI matrix denoted as A, in which ai, j = 1 if
drug di interacts with target ti and ai, j = 0 otherwise.
Rows and columns in A are called as drug interaction

profiles and target interaction profiles respectively.
DTI matrix is also the adjacent matrix of DTI bipartite
graph, so it can characterize the topological informa-
tion between drug and target nodes in the graph. In
addition, drugs or targets are usually characterized as
highly-dimensional feature vectors (e.g. the finger-
prints of drugs), or directly organized into a symmetric
similarity matrix of which each entry is the pairwise
drug similarity measured by algorithms (e.g. align-
ment). When given a similarity matrix, we can turn it
into the corresponding feature matrix by singular value
decomposition (see also Section Settings). Suppose
that each drug can be represented a p-dimensional fea-
ture vector ({di ∈ Rp, i = 1, 2,…,m}), and each target
can be represented a q-dimensional feature vector
({tj ∈ Rq, j = 1, 2,…, n}). Therefore, the feature vectors
of m drugs and n targets can be organized into the
m × p feature matrix Fd and the n × q feature matrix Ft
respectively.
We believe that drugs and targets can be mapped from

their own feature spaces into a latent pharmacological
space simultaneously and their inner products are corre-
lated with their interactivity. The drug and the target in
the pair corresponding to an interaction are near to each
other in such a space, otherwise are far from each other.
Thus, the DTI matrix can be represented as a triple
matrix factorization (TMF),A ≈ FdΘFT

t where Θ is the
bi-projection matrix, in which each entry indicates the
importance of the pairs between drug features and target
features among interactions and non-interactions. It
builds the bridge between the features of drugs, the fea-
tures of targets as well as the interactions between them.

Nevertheless, it cannot be directly solved by Θ ¼ ðFdÞ−1
AðFT

t Þ
−1

because of p≫m and q≫ n in general. For ex-
ample, drugs can be represented by an ordered list of bin-
ary bits (e.g. PubChem Fingerprint containing 881 bits),
which characterize the substructures of drug chemical
structure. Each bit represents a Boolean determination of
the presence of an element (e.g. a type of ring system,
SMART patterns) in a chemical structure [20]. By con-
trast, the number of drugs in the given benchmark dataset
is possibly smaller the number of fingerprint bits. For in-
stance, the biggest one (EN) in the benchmark datasets
originally built by Yamanishi et al. [19] has only 445 drugs
(See also Section A case study of interpreting dominant
binding features). Some fingerprints, such as Klekota-Roth
fingerprint having 4860 bits, may aggravate the difficulty
of solving a regression model. Similar problem also arises
in target features (e.g. K-mer having 20K features).

Again, it cannot solved by Θ ¼ ðFT
d FdÞ−1FTdAFt

ðFTt FtÞ
−1

as well because either FT
d Fd or FT

t Ft could be
nearly singular. The issue is usually caused by the

Table 1 Statistics of DTI benchmark datasets

EN IC GPCR NR

Number of drugs 445 210 223 54

Number of targets 664 204 95 26

Number of interactions 2926 1476 635 90
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multicollinearity among feature dimensions. Because
the bits in drug fingerprint feature are ordered from
simple to complex forms, there may have a dependency
between bits. For example, the first four bits of Pub-
Chem Fingerprint indicate whether a chemical struc-
ture contains more than 4, 8, 16, and 32 hydrogen
atoms respectively. Obviously, when the fourth bit is 1,
the other three bits are surely 1 as well. Obviously, there is
a multicollinearity among Fingerprint bit values.
As a result, we obtain Θ by solving the following

optimization

Θ� ¼ arg min J Θð Þ ¼ A−FdΘFTt
�� ��2

F þ λ Θk k2F
� �

:

ð1Þ

Its solution can be achieved by Lagrange Multiplier
Method. Let ∇J(Θ) = 0, we can solve −2FT

dAFt þ 2FTd Fd

ΘFTt Ft þ 2λΘ ¼ 0 to obtain Θ∗. The equation is a form
of Sylvester Equation: AXB +CXD = E, which can be
rewritten as (A⊗ B +C⊗D)vet(X) = vet(E), where vet is
the stack of columns of matrix and ⊗ is Kronecker
product. However, when both p and q are large num-
bers, Kronecker product generates a pq × pq matrix,
which is too large to handle in memory.
Therefore, considering A is a low-rank matrix, we fi-

nally reformulate our problem by approximating it to
another one as follows

A�
d;A

�
t ;B

�
d;B

�
t

� � ¼ arg min J Ad;At ;Bd;Btð Þ

J ¼ A−AdAT
t

�� ��2
F
þ Ad−FdBdk k2F

þ At−FtBtk k2F þ λ Adk k2F þ μ Atk k2F
þ α Bdk k2F þ β Btk k2F ð2Þ

where the first term in J denotes low-rank decomposition
of A, the second denotes the linear regression between
drugs’ latent interaction properties and their input fea-
tures, the third term similarly accounts for the linear re-
gression of targets, the last four terms are regularization
terms. In detail, Ad is the m × r latent interacting matrix
of drugs, At is the n × r latent interacting matrix of targets,
and each row in Ad or At accounts for the latent topo-
logical properties of a drug or a target, because A can be
treated as the adjacent matrix of DTI bipartite graph [10].
Their joint reflects the underlying pharmacological space.
Moreover, Bd is the p × r regression coefficient matrix of
drugs, Bt is the q × r regression coefficient matrix of tar-
gets, r ≤ rank (A), α and β are the positive coefficients for
the regularization terms. Obviously, the number of en-
tries/elements in the variables to be solved, (m + n + p +
q) × r, in Formula (2) is fewer than that (p × q) in Formula
(1) because usually p≫m and q≫ n. Once both B�

d and

B�
t are solved, Θ

∗ can be easily achieved by Θ� ¼ B�
dðB�

t ÞT .

The detailed solution can be achieved by Alternating
Least Square, which iteratively solves a specific variable in
turn by fixing other variables until reaching a conver-
gence. In each round of its iterations, this procedure
solves a set of equations { ∂ J

∂Ad
¼ 0, ∂ J

∂At
¼ 0, ∂ J

∂Bd
¼ 0, ∂ J∂Bt

¼ 0}

in turn, where the partial derivative functions are de-
fined in Additional file 1. Since all the norms are Frobe-
nius norm, their close-form solutions can be obtained
as follows:

Ad ¼ AAt þ FdBdð Þ AT
t At þ Iþ λI

� �−1
;

At ¼ ATAd þ FtBt
� �

AT
dAd þ Iþ μI

� �−1
;

Bd ¼ FTd Fd þ αI
� �−1

FT
dAd; Bt ¼ FTt Ft þ βI

� �−1
FTt At:

ð3Þ

Note that since some entries of A in S1 are unob-
served, we cannot get the matrix-form solution involving
A, but only the entry form of solution (See also
Additional file 1).

Unified predictive model
After obtaining the bi-projection matrix Θ∗, we intro-
duce a unified solution for the prediction in S1, S2, S3
and S4 based on the proposed bi-regression model
(Fig. 2) as follows.
In the first scenario S1 (see also Fig. 1), our task is to

infer how likely drug-target pairs are potential interac-
tions. The confidence score of the testing entry A(u, v)
in A is defined as,

~A ¼ Fd;uΘ�FTt;v ð4Þ

where Fd,u is the feature vector of du and Ft,v is the fea-
ture vector of tv
In S2, given a new drug dx, we aim to infer its interact-

ing targets among T. Then the confidence score of dx
interacting with T is defined as

~D
x
A ¼ Fd;xΘ

�FTt ð5Þ

where Fd,x is the feature vector of dx.
In S3, given a new target ty, we aim to infer its inter-

acting targets among D. Then its confidence score of
interacting with D is similarly defined as

Ty
A ¼ FdΘ�FT

t;y ð6Þ

where Ft,y is the feature vector of ty.
In the most difficult scenario S4, our task is to find

how likely a new drug dx and a new target ty interact
with each other. The confidence score is defined as
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e~Ax;y ¼ Fd;xΘ
�FTt;y ð7Þ

In practice, when p≫m or q≫ n, we may calculate

the confidence scores by FdB�
dðFtB�

t ÞT , but not directly
byFdΘ�FT

t since the size of Θ∗ is very large.
Obviously, TMF provides a unified form of solution

for four types of DTI prediction by connecting drug fea-
ture space with the latent interaction topological space
and connect target feature space with it simultaneously.
This advantage would help achieve an inspiring DTI pre-
diction but also provide an attempt to interpret why
drugs interact with targets. Specifically, the regression
coefficient matrix (Bd or Bt) depicts the correlation be-
tween the feature matrix and the latent matrix. In other
words, it is the bridge between the feature space and the
interaction space. Consequently, we generate three sig-
nificant matrices from Bd and/or Bt to investigate the
DTI graph given in Fig. 1.
The first one is the p × q bi-projection matrix which

is represented by Θ� ¼ B�
dðB�

t ÞT . As its (i, j) entry can be
positive, negative or zero, its sign indicates whether the
pair of the i-th drug feature and the j-th target feature
occur in interactions, non-interactions or not occur in
all drug-target pairs, and its absolute value denotes the
occurring intensity.

The second one is the p × n matrix Θd ¼ Θ�FT
t called

as Drug Projection Matrix, which maps the feature vec-
tors of drugs (e.g. fingerprint) to their latent interaction
topology (corresponding to S2). The sign of the (i, j)
entry in Θd indicates: (1) the intensity of the i-th drug
feature appearing in the set of drugs which interact with
target j, if its value > 0; (2) the negative intensity of the
i-th drug feature which doesn’t appear in the set of
drugs interacting with target j, but appear in other drugs,
when its value < 0; (3) no such drug feature appearing in
all the drugs in the given dataset, if its value = 0.
The third one is the m× q matrix Θt= (FdΘ

∗)T called as
Target Projection Matrix, which maps the feature vectors of
targets (e.g. K-mer) to their interaction profiles (correspond-
ing to S3). The entries in Θt having different signs also indi-
cate significant meanings. The (i, j) entry represents (1) the
intensity of the i-th target feature appearing in the set of tar-
gets which interact with drug j, if its value > 0; (2) the negative
intensity of the i-th target feature not appearing in the set of
targets which interact with drug j, but appearing in other tar-
gets, when its value < 0; (3) and no such feature appearing in
all the targets in the given dataset, if its value = 0.
A case study of interpreting the abovementioned pro-

jection matrices shall be performed in Section A Case
Study of Interpreting Dominant Binding Features.

Fig. 2 Illustration of triple matrix factorization over four predicting scenarios. The big rounded rectangle indicates the triple matrix factorization.
Fd, x is the feature vector of the new drug dx and Ft, y is the feature vector of the new protein ty. The predicted confidence scores for S1, S2, S3

and S4 are denoted by ~A,~D
x
A ,T

y
A and e~Ax;y respectively
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Cross validation and assessment
Remarkably, when assessing approaches, the appropriate
schemes of cross validations for different scenarios should
be adopted, otherwise over-optimistic results are perhaps
obtained [3, 6, 21]. We generate different tasks of CV
under four scenarios illustrated in Fig. 1 respectively:
S1: CV used the pairs between the drugs having >= 2

targets and the targets interacting with >= 2 drugs to avoid
using the pairs, which should be used in three other sce-
narios. In each round of CV, some of these pairs are ran-
domly selected for testing, and the union of the rest of
them and other entries in A are used for training.
S2: CV is performed on drugs, where the rows corre-

sponding to drugs in A are randomly blinded for testing
and the resting rows are used for training.
S3: CV is performed on targets, where the columns

in A (accounting for targets) are randomly blinded for
testing and the resting columns are used for training.
S4: CV is performed on drug-target pairs, where the

entries in A (drug-target pairs) are randomly selected
for testing again, but all the rows and columns contain-
ing the testing entries are blinded for testing as well as
training simultaneously. In other words, both the rows
and the columns in A for training contain NONE of
drugs or target involved in the testing entries.
In S1, S2 and S3, the same 10-CV as that in [16] is

used. For example, in each round of S2, 90% of rows in
Y are used as the training data and the remaining 10%
of rows are used as the testing data. The similar proce-
dures are adopted in both S1 and S3. Remarkably, be-
cause the CV of S4 is spanned by drug subsets and
target subsets [3], a 10 × 10-CV in S4 contains 100 CV
rounds, which would cause a large computation. More-
over, some rounds of the 10 × 10-CV could contain no
positive drug-target pair in the testing set due to the
sparse DTI network. This issue would cause a great

variance over the CV when calculating precision and
recall. Thus, considering the abovementioned distinct-
iveness of S4, we adopt a 5 × 5-CV. In detail, all the
known drugs and all the known targets are randomly
partitioned into five non-overlapping subsets of equal
size respectively. In each round of the CV, each subset
of drugs is removed as the testing drugs Tstd, each sub-
set of targets is removed as the testing targets Tstt and
the remaining drugs and targets are severally referred to
as the training drugs Trnd and the training targets Trnt.
All the entries between Trnd and Trnt in A are labelled as
the training entries, only the entries between Tstd and
Tstt in A are labelled as the testing entries, and the entries
between Tstd and Trnt as well as those entries between
Trnd and Tstt attend in neither training nor testing phases.
An illustration of these CV schemes are shown in Fig. 3.
Former approaches usually use the Area Under the

receiver operating characteristic Curve (AUC) to evalu-
ate the performance of prediction. However, When the
number of positive instances is much less than that of
negative instances (e.g. DTI prediction), the area under
precision-recall curve (AUPR) is more appropriate than
AUC since it performs great penalty on highly-scored
false positive predictions [15, 22]. Thus, we adopt
AUPR to measure the performance of DTI prediction.
The performance of DTI prediction is evaluated under
K-fold cross-validation (K-CV) over N repetitions with
different random seeds [16]. We calculate an AUPR
score in each repetition of K-CV and report the average
over N repetitions as the final AUPR score in the
following experiments.

Results and discussion
Settings
Because the original datasets provide drug similarity
matrices and target similarity matrices, we cannot

Fig. 3 Illustration of cross-validation schemes for four scenarios. Each column accounts for a scenario. The first row contains the DTI matrices, in
which the entries marked with “?” are the pairs of interest to be tested. Especially, the entries marked with “-” in S4 attend in neither training nor
testing phases. The second row contains the topologies of the pairs of interest
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direct utilize them. To accommodate both the drug
similarity matrix and the target similarity matrix into
our TMF, we applied singular value decomposition
(SVD) to generate the corresponding feature matrices

Fd and Ft by S ¼SVDUΣVT ¼ U
ffiffiffiffi
Σ

p ffiffiffiffiffiffi
ΣT

p
VT ¼ FFT before

running TMF. Then, we set the starting point of four
variables as follows: (1) considering that A is a non-full
rank matrix and the equivalent and symmetric roles of
Ad and At, we generated the initial values of Ad and Atby

SVD again by A ¼SVDUaΣaVT
a ¼ Ua

ffiffiffiffiffi
Σa

p ffiffiffiffiffiffi
ΣT
a

q
VT

a ¼ AdAT
t ;

(2) considering that both the number of features possibly
greater than the number of drugs or targets and the
multicollinearity among features, we utilize Partial
Least-Squares Regression (PLSR) [23] to generate the
initial values of Bd and Bt accordingly. Last, we set 10
as the number of fold in cross validation in the first
three scenarios, 5 as that in the last scenario to guaran-
tee the testing set in each round contains at least one
positive instance, and 50 as the number of CV
repetitions.
Moreover, we aim to demonstrate the superior ability

of our TMF to find dominating pairs between drug fea-
tures and target features, however, the features achieved
by SVD on similarity matrices are latent features, which
are not explicitly interpretable to pharmacologists.
Therefore, we used PubChem fingerprints as drug fea-
tures and the frequencies of amino acid trimers as target
features. The former reflects the occurrence of chemical
substructures, such as an element count, a type of ring
system, atom pairing, atom nearest neighbors and
SMARTS patterns. The latter characterizes the conser-
vation of triple amino acids, which contribute to finding
the binding pocks in proteins. The dominating feature
pairs consisting of both important chemical structures
and conserved protein sequence patterns are helpful to
drug discovery, especially chemical structure design and
binding pocket finding.

Comparison with state-of-the-art approaches
Before running the comparison, we investigated how the
dimension of the latent space influences the prediction.
Taking NR dataset as an example, we tuned the value of
r from the list {rank(Atrn), rank(Atrn)/2, rank(Atrn)/3,
rank(Atrn)/4, rank(Atrn)/5} by λ = μ = 1.0 and α = β = 0.5
in Scenario S1, where Atrn is the training adjacent matrix
of DDI in each round of CV. Usually, the bigger the
value of r is, the better the prediction is. Considering no
significant improvement between in the first two
cases of its values as well as the low-rank require-
ment, we chose the rank(Atrn)/2 as its default value.
Moreover, we investigated how the four regularization

parameters λ, μ, α, and β in Formula (2) influence the

prediction under the condition of the latent dimension
r = rank(Atrn)/2. We tuned the values of λ, μ, α, and β
from the list {0.005,0.05,0.5,1}. Considering the technic-
ally equal roles played by drugs and targets, we always
set λ = μ and α = β. For example, the overview influence
of tuning them on NR dataset in Scenario S1 is illus-
trated in Fig. 4.
In a similar way, after investigating all the scenarios

across all the dataset, we finally determined the values of
the four parameters as follows: for S1, λ = μ = 1.0 and
α = β = 0.5; for S2, λ = μ = 0.05 and α = β = 0.5; for S3
λ = μ = 0.5 and α= β= 0.05; for S4 λ= μ= 0.05 and α= β=
0.5. Moreover, we found that the prediction is less sensitive to
their values in the case of big datasets (e.g. EN, and IC)
but more sensitive in the case of small datasets (e.g.
NR) during the investigation. These values were used in
the following experiments.
To validate the performance of TMF, we compared it with

other state-of-the-art approaches, including NetLapRLS [7],
WNN-GIP [8], RLScore [3], KBMF2K [14], CMF [15] and
NRLMF [16], in both cross-validation and novel prediction.
During the cross validation, these approaches are

able to cope with at least the first three scenarios.
The set of the first three approaches exploits diverse
classification-based models, while the set of the last
three utilizes different matrix factorization-based
models. Furthermore, we made an extra comparison
with RLScore and KBMF2K in the last scenario be-
cause both of they can predict DTIs in this scenario.
The comparison on four kinds of cross-validation
schemes shows that our TMF is significantly superior
to other approaches in terms of both AUPR (Table 2)
and AUC (see Additional file 2).

Fig. 4 Example of how the regularization parameters influence the
prediction on NR dataset in Scenario S1. The performance is also
measured by AUPR. The best values of the parameters are λ = μ = 1.0
and α = β = 0.5, which are highlighted with a white circle
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Then, we evaluated TMF on predicting novel interac-
tions, which are those highly-confident interactions not
observed or labelled in the original benchmark datasets.
Novel prediction reflects the ability of TMF on drug repo-
sitioning, which finds new uses for approved drugs. Unlike
the ordinary cross validation, we deduce potential DTIs by
the transductive inference, which uses the entire dataset
as the training set and ranks the unknown drug-target
pairs based on their interaction confidence scores gener-
ated by A ¼ FdΘ�FTt . After ranking the unlabeled pairs
with respect to their interaction scores, we picked up the
top 10 predicted interactions as the interaction candidates.
We further checked the predicted candidates in four
popular databases, including DrugBank (D), KEGG (K),
Matador (M) and ChEMBL (C), to validate the predicting
performance of our model. An interaction candidate is
marked with the first letter of database’s name if it is found
in any of those databases (Table 3). The successful ratios
of the number of top-10 validated candidates in four data-
sets are 70%, 90%, 90% and 50%. Compared with other ap-
proaches (Table 4), our model is able to achieve the best
results of novel predictions across all the benchmark

datasets with both larger average and less standard devi-
ation of successful prediction ratios. These results demon-
strate that our TMF is capable in both finding novel DTIs
and helping preliminary screening of drugs in reality with
the advantages of significant reduction of cost.
To sum up, the superiority of TMF is validated by

both cross-validations and novel prediction.

A case study of interpreting dominant binding features
In this section, to dig out more factors determining
interactions, we investigated the pairwise features be-
tween drugs and targets, the shared features of drugs
interacting with a common target and the shared fea-
tures of targets interacting with common drugs. Phar-
macologists prefer interpretable drug/target features,
however, the drug/target latent features generated from
drug/target similarity matrix are uninterpretable. Thus,
we adopted other explicit drug/target features to find
dominating feature pairs contribute to form DTI.
Selecting NR dataset as the studying case, we applied

PubChem fingerprint to characterize 2D structures of
drugs and the frequencies of amino acid trimer (3-mer)

Table 2 Comparison with state-of-the-art approaches in terms of AUPR

NetLapRLS WNN-GIP RLScore KBMF2K CMF NRLMF TMF

S1-CV

EN 0.789 ± 0.005 0.706 ± 0.017 0.828 ± 0.011 0.654 ± 0.008 0.877 ± 0.005 0.892 ± 0.006 0.952 ± 0.002

IC 0.837 ± 0.009 0.717 ± 0.020 0.769 ± 0.015 0.771 ± 0.009 0.923 ± 0.006 0.906 ± 0.008 0.952 ± 0.002

GPCR 0.616 ± 0.015 0.520 ± 0.021 0.625 ± 0.012 0.578 ± 0.018 0.745 ± 0.013 0.749 ± 0.015 0.844 ± 0.006

NR 0.465 ± 0.044 0.589 ± 0.034 0.526 ± 0.045 0.534 ± 0.050 0.584 ± 0.042 0.728 ± 0.041 0.811 ± 0.035

S2-CV

EN 0.123 ± 0.009 0.278 ± 0.037 0.313 ± 0.031 0.263 ± 0.033 0.229 ± 0.020 0.358 ± 0.040 0.438 ± 0.016

IC 0.200 ± 0.026 0.258 ± 0.032 0.300 ± 0.020 0.308 ± 0.038 0.286 ± 0.030 0.344 ± 0.033 0.376 ± 0.017

GPCR 0.229 ± 0.017 0.295 ± 0.025 0.368 ± 0.025 0.366 ± 0.024 0.365 ± 0.022 0.364 ± 0.023 0.428 ± 0.011

NR 0.417 ± 0.048 0.504 ± 0.056 0.500 ± 0.058 0.477 ± 0.049 0.488 ± 0.050 0.545 ± 0.054 0.541 ± 0.033

S3-CV

EN 0.669 ± 0.021 0.566 ± 0.038 0.794 ± 0.021 0.565 ± 0.023 0.698 ± 0.021 0.812 ± 0.018 0.866 ± 0.007

IC 0.737 ± 0.020 0.696 ± 0.035 0.781 ± 0.026 0.677 ± 0.021 0.620 ± 0.027 0.785 ± 0.028 0.853 ± 0.008

GPCR 0.334 ± 0.025 0.550 ± 0.047 0.533 ± 0.051 0.516 ± 0.045 0.433 ± 0.028 0.556 ± 0.038 0.677 ± 0.028

NR 0.449 ± 0.074 0.531 ± 0.073 0.433 ± 0.079 0.324 ± 0.071 0.400 ± 0.077 0.449 ± 0.079 0.675 ± 0.062

S4-CV

EN – – 0.238 ± 0.018 0.211 ± 0.020 – – 0.265 ± 0.023

IC – – 0.187 ± 0.020 0.232 ± 0.011 – – 0.251 ± 0.014

GPCR – – 0.208 ± 0.017 0.111 ± 0.034 – – 0.231 ± 0.021

NR – – 0.191 ± 0.051 0.231 ± 0.040 – – 0.239 ± 0.037

In S1, S2, S3, the results generated by former approaches were reported by [16]. The best results in each benchmark dataset under four kinds of CVs are
highlighted in bold face and the second-best results are underlined
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to encode protein sequences of targets respectively.
The PubChem fingerprint-based feature vectors of NR
dataset is organized into the 54 × 881 feature matrix Fd,
while its trimer-based feature vectors is organized into
the 26 × 8000 feature matrix Ft because the trimer con-
tains 8000 (=203) amino acid triplets.
PubChem fingerprint provides an ordered list of bin-

ary (1/0) bits, which indicate the occurrences of 881
specific substructures. They can be categorized into 7
groups, including Hierarchic Element Count (e.g. '>= 16
H' and '>= 32 C'), Ring in a canonic Extended Smallest
Set of Smallest Rings(e.g. '>= 4 aromatic rings'), Simple
Atom Pairs (e.g. 'Li-H' and 'C-S'), Simple Atom Nearest
Neighbor(e.g. 'C(~C)(:C)(:N)'), Detailed Atom Neigh-
borhood (e.g. 'C(#N)(-C)' and 'C(-C)(-C)(=O)'), Simple
SMARTS Pattern (e.g. 'N#C-C=C' and 'N-C=C-[#1]')
and Complex SMARTS Pattern (e.g. 'Cc1cc(S)ccc1'),
where “~”, “:”, “-”, “=”, “#” match no bond order, bond
aromaticity, single bond, double bond, and triple bond
order respectively.
For targets, besides, we did not extract 3-mers on the

whole sequences of targets (Nuclear Receptor proteins)
in NR, but on the subsequences corresponding to their
ligand-binding domains via the annotation in HGNC
database [24], since all the proteins contain a
DNA-binding domain and a ligand-binding domain.

To depict easily in the following sections, the pair of
chemical substructure and amino acid triplet is referred
as a feature pair.

Significant feature pairs
First, the bi-projection matrix Θ∗ since its (i, j) entry is
able to reflect whether the pair of the i-th drug feature
and the j-th target feature occur in interactions (posi-
tives), non-interactions (negatives) or not occur in all
drug-target pairs (zeros).
By sorting all drug-target feature pairs their values,

we first chose both the top positive feature pair
{'C(#C)(-H)', 'GLR'} and the bottom negative feature
pair {'C(~H)(~O)', 'LLL'} as two examples, to illustrate
how frequently they appear in interactions and non-in-
teractions respectively. After that, we counted the drugs
out of 54 drugs and the targets out of 26 targets in-
volved in the top/bottom pair, as well as the known in-
teractions between them. Lastly, we measured how
frequently the feature pair occurs in interactions by the
ratio of the number of known involving interactions to
the number of pairs between the drugs and the targets.
In detail, 6 drugs, 1 target and 5 interactions are in-

volved in the top pair, while 31 drugs, 13 targets and
only 28 interactions are involved in the bottom pair.

Table 3 De novo prediction on benchmark datasets

Rank EN IC GPCR NR

1 D D00947 hsa:4129 CD D00546 hsa2566 K D02250 hsa6751 C D00182 hsa2099

2 M D00528 hsa:1549 D D00546 hsa2567 CD D02358 hsa154 C D00348 hsa6258

3 CMD D00437 hsa:1559 CK D00553 hsa6336 D D00079 hsa5731 CK D00348 hsa5915

4 – D00188 hsa:1594 – D05024 hsa774 KD D00106 hsa5739 – D00348 hsa190

5 M D00437 hsa:1585 M D00775 hsa2898 KD D00095 hsa155 CKD D00690 hsa2908

6 – D03670 hsa:1579 CD D00546 hsa2555 KD D00442 hsa6755 – D00348 hsa6096

7 D D05458 hsa:4128 C D01768 hsa6331 – D00682 hsa5739 CK D00348 hsa5916

8 D D03365 hsa:1548 C D00495 hsa8913 KD D00095 hsa150 – D00348 hsa6257

9 CD D00097 hsa:5743 D D00546 hsa2564 K D00682 hsa5737 – D00348 hsa6256

10 – D00691 hsa:5152 CD D00546 hsa2561 K D00442 hsa6753 – D00348 hsa6097

Table 4 Successful ratios of novel prediction among top-10 candidates

DB NetLap-RLS WNN-GIP RLScore KBMF-2 K CMF NRLMF TMF

EN 70% 70% 70% 70% 20% 90% 70%

IC 60% 30% 50% 100% 0% 50% 90%

GPCR 40% 30% 60% 90% 50% 60% 90%

NR 10% 0% 20% 40% 10% 50% 50%

Mean 45% 33% 48% 75% 20% 63% 75%

Std. 0.265 0.287 0.263 0.265 0.216 0.189 0.191

The best results are highlighted in bold face. Mean and Std. denote the average of successful ratios and their standard deviation over four benchmark
datasets respectively
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For the top pair, the ratio of feature pairs attending in-
teractions is 83.33% (=5/6). By contrast, for the bottom
pair, the ratio of feature pairs attending non-interac-
tions is 93.05% (=1–28/403). Similar results can be
found in the top-n and the bottom-n pairs. Besides, all
feature pairs having zero values represents their ab-
sence in the given drug-target pairs.
Consequently, the bi-projection matrix is able to indi-

cate the feature pairs tending to occur in interactions,
and the feature pairs tending to appear in the drug-tar-
get pairs of non-interactions. The greater the absolute
values are, the stronger the tendency is. Meanwhile, it
is also able to show that neither drug features nor tar-
get features in the zero-valued pairs are present among
Nuclear Receptor and their drugs.

Frequently occurring substructures
Secondly, we investigated the p × n drug projection
matrix Θd ¼ Θ�FTt , which can show at least two kinds
of useful substructure patterns in PubChem fingerprint.
One is the frequently occurring substructures FP1 of all
drugs in NR dataset. Another is the significantly occur-
ring and not occurring substructures FP2 of the drugs
sharing a specific target.
To find out FP1, we counted the occurrence of each

substructure having positive entries in Θd. Those sub-
structures are highly occurring (Table 5) in all the drugs
of Nuclear Receptors. Consequently, FP1 may globally
reveal a part of underlying common rules in designing
drugs for Nuclear Receptors.
Each column inΘd, accounting for a target, indicates

how often chemical substructures (rows) appear in the
drugs interacting with itself. Based on this, we can dig
out the substructure patterns FP2. In details, target
hsa7421, interacting with the drugs, D00129, D00187,
D00188, D00299, and D00930, were selected as the

example. After checking its top-4 substructures/finger-
prints ('C-C=C-C=C', 'C=C-C=C', 'O-C-C-C=C' and '> =
32 H') in terms of substructure occurrence, we found
that only these five drugs of “hsa7421” and two add-
itional drugs ('D00211' and 'D01161') interacting with
other targets contain all the four substructures. Mean-
while, after checking the bottom-2 substructures/fin-
gerprints ('>= 3 any ring size 6' and 'Cc1ccc(C)cc1')
which don’t occur in the drugs interacting with
hsa7421, we found that both 'D00211' and 'D01161'
contain all the two substructures. Consequently, FP2 is
able to locally characterize the substructure occurrence
of the drugs interacting with Target “hsa7421”. Mean-
while, it is able to differentiate these drugs of “hsa7421”
from the drugs interacting with other targets which are
different to “hsa7421”.

Conserved triplet of amino acids
Last, we analyzed the m × q target projection matrix
ΘT

t ¼ FdΘ� . Similarly, it can also show at least two
kinds of useful trimer patterns, including the common
trimer patterns C1 of all targets in the dataset as well
as the common trimer patterns C2 of the targets
sharing a drug. These common patterns are poten-
tially conserved.
To find out C1, we counted the occurrence of each

amino acid triple having positive entries in ΘT
t and

picked up the most occurring triple. In NR dataset, it
is ‘PGF’, which appears in the same position among 16
out of 26 targets, and of which its variants ‘PHF’, ‘PAF’,
‘PVF’, ‘PCF’, ‘SYF’, ‘DGF , ‘TGF’ and ‘SGF’ appear in the
same position in the remaining target sequences. We
also validated the conservation of this triplet pattern
by the multiple sequence alignment tool, ClustalX
(http://www.clustal.org/clustal2/) [25]. The alignment
shows that ‘PGF’ and its variants are still matched in
the same position without a gap. Thus, ‘PGF’ is the
common trimer pattern in the given Nuclear Receptor
proteins. Actually, it is just a part of the class-inde-
pendent local motif (type 2) which is known as a ‘sig-
nature sequence’ for Nuclear Receptor [26].
In addition, each row denoting a drug in ΘT

t corre-
sponds to how amino acid triplets (columns) appear in
the targets interacting with the drug. Based on it, the
significance of C2 can be found. In details, two drugs
D00577 (interacting with hsa2099, hsa2100, hsa2101,
hsa2103, hsa2104) and D00585 (interacting with targets
hsa2908, hsa367, hsa4306 and hsa5241) were selected
as the example. According to the values of entries in
ΘT

t , for D00577, the top-1 triplet is ‘LAD’ which is
common in the sequences of its targets and is validated
as a conserved trimer by ClustalX 2.1 as well. Other
highly occurring triplets, such as ‘ALA’, ‘ELV’, show the

Table 5 Frequently occurring substructures(PubChem
fingerprint) of the drugs in NR

Substructures Group of PubChem fingerprint Occurrence
(> = 75%)

'C-C-C-C-C-C-C' G6: Simple SMARTS pattern 0.8462

'C-C-C-C-C-C-C-C' G6: Simple SMARTS pattern 0.8077

'C(-C)(-C)(=C)' G5: Detailed atom neighborhood 0.8077

'> = 16 H' G1: Hierarchic Element
Count

0.8077

'Cc1cc(O)ccc1' G7: Complex SMARTS
pattern

0.7692

'C-N-C-[#1]' G6: Simple SMARTS pattern 0.7692

'C(~H)(~N)' G4: Simple atom nearest neighbor 0.7692

'> = 16 C' G1: Hierarchic Element
Count

0.7692
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similar results. For D00585, over 20 conserved triplets
are found, including ‘QLT’, ‘RFY’, ‘QYS’, ‘FYQ’ and so on.
To summarize, the regression coefficient matrix is

able to indicate how often a pair of drug feature-target
feature occurs in interaction or non-interaction, what
the shared features of drugs interacting with common
targets are, and what the shared features of targets
interacting with common drugs are.

Conclusions
Computational approaches are able to predict candidates
for screening DTIs. However, very most of them cannot
be exploited in all the four scenarios of screening DTIs.
Most importantly, none of them can explicitly indicate
the features that determinate or contribute to DTIs. In
this paper, through capturing the relationship between
drug-target pairs in the pharmacological space, we have
proposed TMF to address these issues. It is able to not
only provide a unified solution to handle all the four sce-
narios of screening DTIs, but also to reveal the features
of drugs and targets, which are critical for forming DTIs.
Experimental results on the benchmark datasets have
shown that TMF is significantly superior to existing
state-of-the-art approaches in cross validations, and out-
performs them in the novel prediction of DTIs by check-
ing existing databases. More importantly, by revealing
dominant features of DTIs, our TMF have provided an
important insight for the underlying mechanism of
DTIs. In addition, TMF can be applied in similar forms
of problems in other areas, such as protein-protein in-
teractions, drug-drug interactions [27–29], gene-disease
associations, and non-coding RNA-disease associations
[30], over not only binary but also real-valued relation-
ship (i.e. binding affinity) between one kind of objects or
two kinds of objects.

Additional files

Additional file 1: Triple matrix factorization. (PDF 237 kb)

Additional file 2: Table S1. Supplementary comparison with state-of-
the-art approaches in terms of AUC. (PDF 23 kb)

Abbreviations
AUC: The area under the receiver operating characteristic curve; AUPR: The
area under precision-recall curve; CV: Cross-validation; DTI: Drug-target
interaction; GCM: Global classification model; LCM: Local classification model;
TMF: Triple matrix factorization

Acknowledgements
The author would like to thank the reviewers for their constructive comments
that help make the paper much clearer.

Funding
This work was supported by the National Natural Science Foundation of
China (No. 61872297), China National Training Programs of Innovation and
Entrepreneurship for Undergraduates (No. 201710699330), the Seed Foundation
of Innovation and Creation for Graduate Students in Northwestern Polytechnical
University (No. ZZ2018170, ZZ2018235), and the Program of Peak Experience of

NWPU (2016). Publication of this article was sponsored by the Seed Foundation
of Innovation and Creation for Graduate Students in Northwestern Polytechnical
University (No. ZZ2018170, ZZ2018235).

Availability of data and materials
The dataset and codes used in this work can be download from https://
github.com/JustinShi2016/Drug-Target-Interactions/tree/master/Bioinformatics

About this supplement
This article has been published as part of BMC Systems Biology Volume 12
Supplement 9, 2018: Proceedings of the 29th International Conference on
Genome Informatics (GIW 2018): systems biology. The full contents of the
supplement are available online at https://bmcsystbiol.biomedcentral.com/
articles/supplements/volume-12-supplement-9.

Authors’ contributions
JYS, SMY and SWZ conceived the study. J-YS developed the prediction
methods, AQZ and KTM prepared the datasets and performed the experiments.
JYS and SMY wrote and proofread it. All authors read and approved the
final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1School of Life Sciences, Northwestern Polytechnical University, Xi’An, China.
2School of Automations, Northwestern Polytechnical University, Xi’An, China.
3School of Computer Science, Northwestern Polytechnical University, Xi’An,
China. 4Department of Computer Science, The University of Hong Kong,
Hong Kong, China.

Published: 31 December 2018

References
1. Hopkins AL. Drug discovery: predicting promiscuity. Nature. 2009;

462(7270):167–8.
2. Swamidass SJ. Mining small-molecule screens to repurpose drugs. Brief

Bioinform. 2011;12(4):327–35.
3. Pahikkala T, Airola A, Pietila S, Shakyawar S, Szwajda A, Tang J, Aittokallio T.

Toward more realistic drug-target interaction predictions. Brief Bioinform.
2015;16(2):325–37.

4. Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions
using bipartite local models. Bioinformatics. 2009;25(18):2397–403.

5. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile
kernels for predicting drug-target interaction. Bioinformatics. 2011;
27(21):3036–43.

6. Shi JY, Yiu SM, Li YM, Leung HCM, Chin FYL. Predicting drug-target
interaction for new drugs using enhanced similarity measures and super-
target clustering. Methods. 2015;83:98–104.

7. Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction
prediction from heterogeneous biological spaces. BMC Syst Biol. 2010;
4(Suppl 2):S6.

8. van Laarhoven T, Marchiori E. Predicting drug-target interactions for new
drug compounds using a weighted nearest neighbor profile. PLoS One.
2013;8(6):e66952.

9. Shi J-Y, Liu Z, Yu H, Li Y-J. Predicting drug-target interactions via within-
score and between-score. Biomed Res Int. 2015;2015:350983 9 pages.

10. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network.
Nat Biotechnol. 2007;25(10):1119–26.

Shi et al. BMC Systems Biology 2018, 12(Suppl 9):136 Page 55 of 134

https://doi.org/10.1186/s12918-018-0663-x
https://doi.org/10.1186/s12918-018-0663-x
https://github.com/JustinShi2016/Drug-Target-Interactions/tree/master/Bioinformatics
https://github.com/JustinShi2016/Drug-Target-Interactions/tree/master/Bioinformatics
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-9
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-12-supplement-9


11. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y.
Prediction of drug-target interactions and drug repositioning via network-
based inference. PLoS Comput Biol. 2012;8(5):e1002503.

12. Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk
on the heterogeneous network. Mol BioSyst. 2012;8(7):1970–8.

13. Seal A, Ahn YY, Wild DJ. Optimizing drug-target interaction prediction based
on random walk on heterogeneous networks. J Cheminform. 2015;7:40.

14. Gönen M. Predicting drug-target interactions from chemical and genomic
kernels using Bayesian matrix factorization. Bioinformatics. 2012;28(18):2304–10.

15. Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization
with multiple similarities for predicting drug-target interactions. In:
Proceedings of the 19th ACM SIGKDD international conference on
knowledge discovery and data mining: 2013. ACM; 2013. p. 1025–33.

16. Liu Y, Wu M, Miao C, Zhao P, Li XL. Neighborhood regularized logistic
matrix factorization for drug-target interaction prediction. PLoS Comput
Biol. 2016;12(2):e1004760.

17. Nagamine N, Sakakibara Y. Statistical prediction of protein chemical
interactions based on chemical structure and mass spectrometry data.
Bioinformatics. 2007;23(15):2004–12.

18. Wang CH, Liu J, Luo F, Deng ZX, Hu QN. Predicting target-ligand
interactions using protein ligand-binding site and ligand substructures. BMC
Syst Biol. 2015;9:S2.

19. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of
drug-target interaction networks from the integration of chemical and
genomic spaces. Bioinformatics. 2008;24(13):I232–40.

20. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, Gindulyte
A, Bryant SH. PubChem BioAssay: 2014 update. Nucleic Acids Res. 2014;
42(Database issue):D1075–82.

21. Shi J-Y, Li J-X, Lu H-M. Predicting existing targets for new drugs base on
strategies for missing interactions. BMC Bioinformatics. 2016;17(Suppl 8):282.

22. Jiao Y, Du P. Performance measures in evaluating machine learning based
bioinformatics predictors for classifications. Quant Biol. 2016;4(4):320–30.

23. Dejong S. Simpls - an alternative approach to partial least-squares
regression. Chemometr Intell Lab. 1993;18(3):251–63.

24. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC
resources in 2015. Nucleic Acids Res. 2015;43(Database issue):D1079–85.

25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X
version 2.0. Bioinformatics. 2007;23(21):2947–8.

26. Tsuji M. Local motifs involved in the canonical structure of the ligand-
binding domain in the nuclear receptor superfamily. J Struct Biol. 2014;
185(3):355–65.

27. Shi JY, Li JX, Gao K, Lei P, Yiu SM. Predicting combinative drug pairs
towards realistic screening via integrating heterogeneous features. BMC
Bioinformatics. 2017;18(Suppl 12):409.

28. Yu H, Mao K-T, Shi J-Y, Huang H, Chen Z, Dong K, Yiu S-M. Predicting and
understanding comprehensive drug-drug interactions via semi-nonnegative
matrix factorization. BMC Syst Biol. 2018;12(s1):14.

29. Shi JY, Shang XQ, Gao K, Zhang SW, Yiu SM. An integrated local
classification model of predicting drug-drug interactions via Dempster-
Shafer theory of evidence. Sci Rep. 2018;8(1):11829.

30. Shi JY, Huang H, Zhang YN, Long YX, Yiu SM. Predicting binary, discrete and
continued lncRNA-disease associations via a unified framework based on
graph regression. BMC Med Genet. 2017;10(Suppl 4):65.

Shi et al. BMC Systems Biology 2018, 12(Suppl 9):136 Page 56 of 134


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Dataset
	Problem formulation
	Unified predictive model
	Cross validation and assessment

	Results and discussion
	Settings
	Comparison with state-of-the-art approaches
	A case study of interpreting dominant binding features
	Significant feature pairs
	Frequently occurring substructures
	Conserved triplet of amino acids


	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

