
RESEARCH Open Access

Modelling the effects of cell-to-cell variability on
the output of interconnected gene networks in
bacterial populations
Nicolò Politi1,2, Lorenzo Pasotti1,2, Susanna Zucca1,2, Paolo Magni1,2*

From Eleventh Annual Meeting of the Bioinformatics Italian Society Meeting
Rome, Italy. 26-28 February 2014

Abstract

Background: The interconnection of quantitatively characterized biological devices may lead to composite systems
with apparently unpredictable behaviour. Context-dependent variability of biological parts has been investigated in
several studies, measuring its entity and identifying the factors contributing to variability. Such studies rely on the
experimental analysis of model systems, by quantifying reporter genes via population or single-cell approaches.
However, cell-to-cell variability is not commonly included in predictability analyses, thus relying on predictive
models trained and tested on central tendency values. This work aims to study in silico the effects of cell-to-cell
variability on the population-averaged output of interconnected biological circuits.

Methods: The steady-state deterministic transfer function of individual devices was described by Hill equations and
lognormal synthetic noise was applied to their output. Two- and three-module networks were studied, where
individual devices implemented inducible/repressible functions. The single-cell output of such networks was
simulated as a function of noise entity; their population-averaged output was computed and used to investigate
the expected variability in transfer function identification. The study was extended by testing different noise
models, module logic, intrinsic/extrinsic noise proportions and network configurations.

Results: First, the transfer function of an individual module was identified from simulated data of a two-module
network. The estimated parameter variability among different noise entities was limited (14%), while a larger
difference was observed (up to 62%) when estimated and true parameters were compared. Thus, low-variability
parameter estimates can be obtained for different noise entities, although deviating from the true parameters,
whose measurement requires noise knowledge. Second, the black-box input-output function of a two/three-
module network was predicted from the knowledge of the transfer function of individual modules, identified in
the presence of noise. Estimates variability was low (16%); however, differences up to 68% were observed by
simulating a typical experimental study where the predictions obtained above were compared to network outputs
generated in the presence of noise. Network predictions can, thus, deviate from real outputs when modules are
characterized and re-used in different noise contexts.

Conclusions: The adopted approach can support predictability studies in synthetic biology by distinguishing
between actual unpredictability and contribution of noise and by guiding researchers in the design of suitable
experimental measurement for gene networks.
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Background
The bottom-up engineering of living systems exhibiting
predictable functions is one of the main goals of synthetic
biology [1-3]. This approach relies on the modularity of
the used components [4-7] or the predictability of system
function upon parts interconnection, environmental
change or genetic context variation [8,9]. A reliable bio-
logical system design process will open the door to the
full exploitation of synthetic biology’s potential, which
will benefit many application fields, like medicine and
bioenergy, via the construction of customized systems for
new drugs or fuel biosynthesis [10,11]. However, the
interconnection of quantitatively characterized biological
parts may lead to composite systems with apparently
unpredictable behaviour, that is, the output cannot be
intuitively gathered from the available knowledge of sub-
parts [5,6,12]. Basic research studies on ad-hoc con-
structed model systems have been conducted to elucidate
the entity of context-dependent variability of biological
parts and devices and, ultimately, to identify the factors
contributing to this variability [6,13-19]. In such studies,
components like promoters or simple inducible/repressi-
ble devices were individually characterized and used to
engineer genetic networks of increasing complexity,
including transcriptional regulator cascades, feedback-
controlled systems or networks mimicking logic func-
tions. The comparison between the experimental output
of interconnected circuits and mathematical model pre-
dictions has been useful to evaluate the predictability
boundaries of biological components when re-used to
engineer diverse systems [20]. Moreover, some of the fac-
tors affecting system modularity have been found, such as
DNA sequences that might enhance or decrease tran-
scriptional activity when placed upstream or downstream
of promoters [6,15] or retroactivity effects due to the
presence of DNA binding sites in interconnected mod-
ules [8,21].
Context-dependent variability studies have also led to

the development of specific genetic architectures, which
significantly enhance the predictability of re-used com-
ponents, such as insulation sequences for promoters
[15] and bicistronic design (BCD) for ribosome binding
sites (RBSs) [22].
In almost all the mentioned research studies fluores-

cent reporter proteins, like the Green Fluorescent Protein
(GFP) and Red Fluorescent Protein (RFP), were adopted
to experimentally measure the output of a genetic net-
work in vivo. Population or single-cell approaches were
used to quantify fluorescence levels: fluorometers or mul-
tiwell microplate readers were adopted to measure the
average fluorescence in the cell population [6,15,18,19],
while flow-cytometry was also commonly adopted to
measure the fluorescence of each single cell in the popu-
lation [13,16,17]. Much of our current knowledge of

biology relies on population-average measurements,
which can lead to incorrect conclusions when popula-
tions are not homogeneous or when inter-individual
variability is crucial [23]. For this reason, single-cell
approaches have widely spread to accurately analyze cell-
to-cell variability in populations. However, even when
single-cell analyses are carried out, fluorescence distribu-
tions among cells are not fully taken into account during
the development, training and testing of predictive math-
ematical models of the network. For this reason, only
central tendency measures of fluorescence are used, like
arithmetic/geometric mean or median, thus using single-
cell approaches as a quality check for measurements,
with fluorescence histograms only exploited as a control
of cell homogeneity [16,24]. In particular, arithmetic
mean can be used to compare data obtained from flow
cytometry and fluorometers/microplate reader acquisi-
tions [25]. On the other hand, only a few studies fully
exploited cell-to-cell variability to build up predictive
models able to describe the behaviour of genetic devices
re-used in different configurations. For instance, Guido
et al. used the Gillespie stochastic algorithm to capture
the single-cell behaviour of a synthetic promoter (induci-
ble by isopropyl b-D-1-thiogalactopyranoside - IPTG -
and repressible by arabinose) and the trained model was
successfully used to predict the output distribution
among recombinant cells bearing a feedback-controlled
network including this promoter, as well as cell-to-cell
variability quantitative changes upon plasmid copy num-
ber modifications [13].
Different fluorescence levels among cells in the same

population can be attributable to noise [26]. Noise is one
of the main features characterizing gene expression in
living cells and it can be considered as a highly important
source of phenotypic variation in cell populations [23,26].
It is important to consider the stochastic nature of che-
mical reactions, which can lead to important phenomena
regarding biological processes such as development, par-
ticularly when dealing with molecular species that are
present in low or very low copy number inside cells.
[26,27]. There are two main aspects of noise that can
interact: an “intrinsic” component, due to the stochastic
nature of the biochemical processes linked to gene
expression itself, and an “extrinsic” one, which is caused
by fluctuations in cellular species such as per cell concen-
trations of polymerases [26,28-30]. Noise in synthetic
biological circuits has been widely studied to elucidate
the entity of its intrinsic and extrinsic components in dif-
ferent contexts [26], characterize its propagation through
interconnected networks [31-33], investigate its contribu-
tions in transcription and translation processes [29],
study its effects in complex biological functions like oscil-
latory networks composed of transcriptional regulators
[34,35] and, finally, even to exploit it for the discovery of
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unknown regulatory motifs via dynamic correlation in
time-course data [36,37]. Noise has also been already
used to explain apparently unpredictable outputs of
genetic circuits that cannot be described by deterministic
models [38].
This work aims to study in silico the effects of cell-to-

cell variability on the population-averaged output of
interconnected biological circuits. In particular, we aim
to investigate if central tendency measures, obtained via
population-based or single-cell approaches, are suitable
to study the input-output behaviour of individual and
interconnected devices, or, conversely, if the entity of
cell-to-cell variability needs to be included to accurately
describe these input-output functions. Considering the
available experimental data of several studies where the
interconnection of modules results in apparently unpre-
dictable circuits, this study can elucidate if some
observed inconsistencies might be caused by cell-to-cell
variability. The computational analysis of several systems
and variability models can support the experiment design
of interconnected networks.

Methods
Genetic circuits topology
The genetic networks studied in this work are shown in
Figure 1. They are transcriptional regulatory cascades
commonly used in synthetic biology studies [6,13,17,21].
These networks are composed of inducible and repressible
devices with a reporter gene downstream, such as RFP, to
measure the circuit output. In particular, an N-3-oxohexa-
noyl-L-homoserine lactone (3OC6-HSL)-inducible device
is always used as the input module of the network; it is
composed of a constitutive expression cassette for the
LuxR protein, which activates the Plux promoter in the
presence of 3OC6-HSL in a concentration-dependent fash-
ion. A genetic NOT gate is considered as downstream
module, composed of a TetR protein expression cassette,
driven by the upstream device promoter, and the Ptet pro-
moter, which can be repressed by TetR in a concentra-
tion-dependent fashion. Another NOT gate device is also
considered; its functioning is analogous to the TetR/Ptet
system and it includes the LacI/Plac repressor-promoter
pair. Finally, a genetic YES gate is considered, which is
composed of an activator protein (herein called A) expres-
sion cassette, driven by the upstream device promoter,
and a promoter (herein called PA) that is activated by A in
a concentration-dependent fashion. While the lux, tet and
lac systems are well-defined and literature parameters are
used to model their functioning (see below), the A/PA sys-
tem is mock and arbitrary parameters are used for it.
The paper is mainly focused on the network of Figure 1A,

where the 3OC6-HSL-inducible device is interconnected to
a TetR-/Ptet-based NOT gate. Two network modifications
are also considered, where the NOT gate is replaced by a

YES gate (Figure 1B) or where a LacI/Plac-based NOT gate
device is interconnected downstream of the TetR/Ptet-
based NOT gate (Figure 1C).

In silico experiments
Assuming the modularity of biological parts [8,9], that is,
the module parameters do not change when different
units are interconnected, we aim to simulate experimen-
tal studies to evaluate the contribution of noise on the
population-averaged network output. Two main investi-
gations were performed, which are described below. The
in silico experiments are carried out by considering the
network at the steady-state and by using Hill equations
to describe the transfer function of each individual mod-
ule. The output of interconnected networks is obtained
by serially propagating the output of Hill functions and
noise is applied at different levels of the networks, as illu-
strated in Figure 1D-H.
Transfer function identification for a single module
The steady-state input-output transfer function of the
TetR/Ptet-based NOT gate (or the YES gate) is mea-
sured by estimating its Hill function parameters from
simulated data, generated by including noise obeying
specified laws. In particular, 3OC6-HSL-inducible
devices affected by different noise entities were used to
drive the NOT gate over a range of input values. The
input devices are assumed to provide identical popula-
tion-averaged signals to drive the NOT gate, except for
the noise entity affecting them. In an experimental fra-
mework, this is analogous to having a set of inducible
devices whose population-averaged transfer function at
the steady-state has been identified via central tendency
measures and the model of noise affecting it is known.
Previous studies were performed via a similar setup
[6,39], where the transfer function of the NOT gate
module was identified in the presence of different input
modules, pre-characterized via central tendency mea-
sures, and different transfer curves were yielded for the
NOT gate; since the different input modules used may
have different noise characteristics, this study aims to
evaluate the contribution of noise on the resulting dif-
ference of the measured transfer curves.
Input-output function identification for an interconnected
network
The black-box input-output transfer function of inter-
connected networks (see Figure 1A-C) is studied for dif-
ferent noise entities. Population-averaged measures of
the individual modules, in the presence of noise, are used
to identify their transfer functions and to predict the
input-output characteristics of the full network. Then,
noise of different entities is applied to the individual
modules and it is propagated throughout the network.
Finally, the population-averaged measures of the network
output are used to identify the black-box Hill function of
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the whole circuit and it is compared to the prediction
obtained above. This study aims to evaluate the contribu-
tion of noise on the apparent unpredictability of compo-
site biological systems obtained by interconnecting
modules characterized via central tendency measures.
The studied situation represents a crucial aspect in the
synthetic biology world, where predictable systems are
expected to be built from the knowledge of a set of indi-
vidual parts [3,5].

Steady-state transfer functions of the genetic modules
The steady-state input-output activity of all the modules
is modelled by Hill equations, describing the synthesis
rate per cell of the protein encoded by the downstream
module, as a function of input molecule concentration
[40-42]. In fact, even if all the considered modules are
based on transcription, the synthesis (or translation) rate
per cell of the downstream gene-encoded protein is
assumed to be proportional to the transcription rate
generated by the input device. This assumption is based
on simple gene expression models, such as the ones
described in [43,44].

All the investigated interconnected networks are stu-
died at the steady-state.
The transfer function of the 3OC6-HSL-inducible sys-

tem (Module 1, Figure 1D-H) is always modelled as:

OUTPUT1 = δIN +
αIN

1 +
(

kIN
3OC6 − HSL

)ηIN (1)

In Eq.1, the output of the device depends on 3OC6-
HSL inducer concentration via four parameters
describing its behaviour: δIN is the basal activity of the
device when no inducer is present, δIN +aIN is the
maximal synthesis rate of the downstream protein, kIN
is the inducer concentration giving an output of

δIN +
αIN

2
, and hIN is the Hill coefficient. The kIN para-

meter is expressed in the same units as 3OC6-HSL
(nM), the hIN parameter is dimensionless and the δIN
and aIN parameters are measured Relative Promoter
Units (RPUs) [43], which are used to approximate the
downstream protein synthesis rate per cell triggered by
the device [6].

Figure 1 Gene networks used in this work. The three main transcriptional regulatory cascades are illustrated. A-C) Genetic circuit structure.
The underlying inducible and repressible mechanisms are reported: in the presence of LuxR, 3OC6-HSL activates Plux; TetR and LacI, encoded by
the tetR and lacI genes, respectively, repress Ptet and Plac; the A protein, encoded by the A gene, activates PA. Curved arrows represent
promoters, straight arrows represent genes, ovals represent RBSs and octagons represent transcriptional terminators. Pcon is a constitutive
promoter. D-H) Block schemes for the genetic circuits, where, for each module, the steady-state transfer function is qualitatively described by
reporting its input-output trend. Module 1 is the LuxR/Plux-based 3OC6-HSL-inducible device (panels D-H); Module 2 is TetR/Ptet NOT gate in
panels D, E, H, while it is the YES gate in panels F, G; for some experiments reported in the Results section, the TetR/Ptet NOT gate was replaced
by a LacI/Plac NOT gate, which has the same repressible logic and this configuration is not shown in this figure; Module 3 is the LacI/Plac NOT
gate (panel H). Noise is applied to the output of Module OUTPUT1 (panels D, F) or to both OUTPUT1 and OUTPUT2 (panels E, G, H).
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The function of the TetR-based NOT gate (Module 2,
Figure 1D, E, H) is modelled as:

OUTPUT2 = δOUT +
αOUT

1 +
(
OUTPUT1

kOUT

)ηOUT (2)

In Eq.2, OUTPUT2 is a decreasing function of OUT-
PUT1 and parameters have the same meaning as above.
Although OUTPUT1 is the TetR synthesis rate per cell,
it is used to approximate the intracellular concentration
of TetR protein, assuming that it is proportional to its
synthesis rate per cell [43]; in this case, the proportion-
ality constant is included in the kOUT parameter.
When considering the three-module network, the

function of the LacI-based NOT gate (Module 3, Figure
1H) is modelled as:

OUTPUT3 = δOUT3 +
αOUT3

1 +
(
OUTPUT2
kOUT3

)ηOUT3 (3)

In Eq.3, all the parameters have the same meaning as
in Eq.2.
The function of the YES gate (Module 2, Figure 1F,G)

is modelled as:

OUTPUT2 = δOUT +
αOUT

1 +
(

kOUT

OUTPUT1

)ηOUT (4)

In this case (Eq.3), OUTPUT2 is an increasing func-
tion of OUTPUT1, as opposed to Eq.2. In Figure 1D-H,
the qualitative trends of the Hill functions for all the
modules are reported. They can be considered as the
deterministic transfer functions of all the devices, in
absence of any stochastic effect, i.e., noise.

Models of noise
Here, noise was assumed to affect protein synthesis rate
per cell (see Figure 1D-H) and to only be dependent on
the interconnected device upstream of the gene encoding
the protein. The “default” network condition considered
in this paper is illustrated in Figure 1A and 1D and its
mathematical model of noise is herein discussed. A
3OC6-HSL-inducible input device is interconnected to a
TetR-based NOT gate, whose output is measured; noise
affects only OUTPUT1. Considering a vector of N indu-
cer concentrations of 3OC6-HSL, at the i-th 3OC6-HSL
concentration (i = 1...N), lognormal multiplicative noise
(vi) is applied to the deterministic output (y1,i) of Module
1 (Eq.5-6).

OUTPUT1,i = y1,i · vi (5)

vi ∼ LogN(0, σ 2
i ) (6)

where the logarithm of the lognormal distribution
gives a Gaussian distribution with mean µ = 0 and var-
iance σ 2

i , which, in general, depends on inducer concen-
tration. The lognormal distribution is widely used to
describe noise in biological processes and, in particular,
it well describes the fluorescence distribution of reporter
proteins in cell populations bearing synthetic gene net-
works, as it is often shown by experimental measure-
ments performed via flow cytometry [45-48].
Under the hypotheses described above, the mean AVE

and variance VAR of the lognormal noise are (Eq.7-8):

AVEi = e

σ 2
i

2
(7)

VARi = eσ
2
i ·

(
eσ

2
i − 1

)
(8)

Since AVE is not 1, the average value of OUTPUT1,i is
not y1,i, but it is (Eq.9):

E
[
OUTPUT1,i

]
= y1,i · AVEi = y1,i · e

σ 2
i

2
(9)

which depends on σ 2
i . In the experiments performed

in this paper, different noise entities are applied to Mod-
ule 1; this would produce different average values for
the same deterministic transfer function at a given
induction (Eq.1). However, in this work we aim to study
the effect of equal population-averaged inputs with dif-
ferent noise entities because instruments used in popu-
lation-based experiments typically measure average
values of reporter proteins. For this reason, we intro-
duced a correction term: to have equal average values
for OUTPUT1 for different noise variances, we corrected
the deterministic output value y1,i as reported in Eq.10.

y1,i = ypop,i · e
−

σ 2
i

2
(10)

where ypop,i is the population-averaged output of Mod-
ule 1 at the i-th induction. From Eq.9 and Eq.10, the
average output value for Module 1 is always (Eq.11):

E
[
OUTPUT1,i

]
= ypop,i (11)

Considering the Hill function of Module 1 (Eq.1), the
aIN,1 and δIN,1 parameters are scaled, with respect to
their nominal values, as indicated in Eq.10, while the kIN
and hIN parameters remain unchanged. This process
enables to set identical population-averaged output
values for different noise entities affecting the 3OC6-
HSL-inducible module.
Two different noise models were considered: with

constant coefficient of variation (CV) or with constant
variance (VAR). The former has been experimentally
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observed in different works in the literature [13,32,33]
and unpublished results from our laboratory, while the
latter was used in this work to test a different assump-
tion via simulations.
First, a constant CV noise model was assumed for all

the 3OC6-HSL input concentrations. From Eq.7-8 it
results that (Eq.12):

CV =

√
VARi

AVEi
=

√
eσ

2
i − 1 (12)

Once a CV value is fixed, a value of s2 can be
obtained (Eq.13):

σ 2 = ln
(
1 + CV2

)
(13)

The s2 value computed from Eq.13 is independent
from ypop,i and it is used to generate noisy samples for
OUTPUT1.
Multiplicative lognormal noise model with constant

VAR was also considered. From Eq.8 and Eq.10 it
results that (Eq.14):

Var
[
OUTPUT1,i

]
= y2pop,i ·

(
eσ

2
i − 1

)
= VAR (14)

From Eq.14, the σ 2
i value can be obtained (Eq.15):

σ 2
i = ln

(
1 +

VAR

y2pop,i

)
(15)

In this case σ 2
i is a function of ypop,i and is different

for every i-th induction.
When noise was also applied to OUTPUT2 (see Figure

1E), multiplicative lognormal noise with constant CV or
VAR was considered and generated by following the
same concepts as above. In this case, noisy samples
were extracted with a correlation coefficient 0<r<1 to
model an extrinsic component of noise in addition to
the intrinsic one. In particular, if noise is fully due to an
intrinsic component, OUTPUT1 and OUTPUT2 are
independent, since intrinsic noise is caused by the sto-
chasticity in processes like gene expression. On the
other hand, if part of the noise is due to an extrinsic
component, OUTPUT1 and OUTPUT2 are correlated
random variables, since biological processes like gene
expression in each single cell are influenced by a pure
stochastic component (intrinsic noise) and by fluctua-
tions of cellular species (extrinsic noise) that are due to
the variation between cells of resources like polymerases
and ribosomes. In this context, the expression of two
different genes shares common resources and, as a
result, it will be correlated. The contribution of extrinsic
noise is tuned by changing r between 0 (no extrinsic
noise) and 1 (no intrinsic noise).

Parameter values and implementation
The parameter values reported in [6] and obtained in
unpublished experiments performed in our laboratory
were used to describe the deterministic steady-state Hill
functions of the nominal lux, tet and lac systems. Such
values are reported for each simulation in the Results
section. The CV values for multiplicative lognormal
noise range between 15% and 75%, which are realistic
values for cell-to-cell variability according to [26,31-33]
and to unpublished experiments in our laboratory.
MATLAB R2010a (MathWorks, Natick, MA) was used

to implement the study by generating data via in silico
experiments and then performing parameter identifica-
tion. For data generation, lognormal noise with specific
entity was applied to the Hill function outputs, which
were propagated throughout the cascade of intercon-
nected modules in the network. The Hill functions were
computed as described in Eq.1-4, while the lognormal
noise was multiplied to the outputs according to Eq.5-6
and Eq.10. The lognrnd function was used to generate
independent lognormal noise samples. Correlated log-
normal noise samples were computed as exp(vn), where
vn are Gaussian noise samples obtained via the mvnrnd
function. For each in silico experiment at the i-th 3OC6-
HSL concentration, 10,000 independent lognormal noise
samples were extracted and used to generate synthetic
data, which simulate the steady-state output of 10,000
sampled cells. The lsqnonlin routine was used for para-
meter estimation. Sensitivity analyses were performed by
changing parameters individually in the value ranges
specified in the Results section, while all the other para-
meters were fixed at their nominal values. Parameters
were changed by spanning a range of plausible values,
according to a number of published [6,19,42,49] and
unpublished in vivo experiments carried out by our
group. The aim of sensitivity analyses was to evaluate
the impact of parameter values on the variability of the
parameter estimates.

Results and discussion
Transfer function identification for a single module
Characterization of a TetR/Ptet-based NOT gate
The two-module gene network illustrated in Figure 1A
was considered as model system and it was analyzed in
its default conditions: OUTPUT1 was affected by multi-
plicative lognormal noise with constant CV, while OUT-
PUT2 was assumed to be unaffected by noise (see Figure
1D). Hill functions with parameters reported in Table 1
were used to simulate the behaviour of the two modules
[6]. CV values were set to 0.15, 0.55 and 0.75. For each
CV value, population-averaged measures of OUTPUT1

are shown, with their 95% confidence intervals, as a
function of 3OC6-HSL concentration (Figure 2A); then,
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population-averaged values of OUTPUT2 are reported in
a representative condition (for clarity of presentation,
only the graph relative to one CV value is reported, see
Figure 2B) with their 95% confidence intervals derived

from the propagation of noise from the upstream mod-
ule; finally, the population-averaged values are shown
and the corresponding fitted curves are also reported
(Figure 2C). By fitting the population-averaged OUT-
PUT2 against OUTPUT1 for each CV, the parameters of
the NOT module were estimated and their values are
reported in Table 2. Given a noise model and entity, the
CV was computed for the aOUT, kOUT and hOUT para-
meters. Since in all cases the δ parameter was very low
and difficult to accurately estimate [6], it exhibited a
very large CV; for this reason, only the variability of the
other parameters will be discussed.
First, the TetR/Ptet-based NOT gate will be consid-

ered and the results obtained by simulating this system
are reported. The variability of parameters was very low,
with hOUT exhibiting the largest variation (CV of 14.2%).

Table 1. Parameter sets used to describe the steady-state
transfer function of the genetic devices

Parameter a δ k h

3OC6-HSL inducible device 4 0.05 700 0.9

TetR/Ptet NOT gate 3 0.05 0.2 2

LacI/Plac NOT gate 0.5 10-5 3.2 1.9

A/PA YES gate 3 0.05 0.2 2

The a, δ, K and h parameters correspond to the aIN, δIN, kIN and hIN
parameters of the 3OC6-HSL inducible device (Eq.1), aOUT, δOUT, kOUT and hOUT
of the TetR/Ptet-based NOT gate and of the A/PA-based YES gate (Eq.2 and
Eq.4) and aOUT3, δOUT3, kOUT3 and hOUT3 of the LacI/Plac-based NOT gate
(Eq.3). Their units are described in the Methods section.

Figure 2 OUTPUT1 and OUTPUT2 signals in the two-module network (including the TetR/Ptet-based NOT gate) with constant CV noise
model. A) OUTPUT1 signal for different noise entities, in response to 3OC6-HSL; in all the graphs, data points represent population-averaged
values and error bars represent 95% confidence intervals. B) OUTPUT2 signal as a function of average OUTPUT1 in case of CV = 0.15. The average
OUTPUT1 is computed from the 3OC6-HSL concentrations from panel A. Data points and error bars have the same meaning as above. Here, the
cell-to-cell variability is derived from the propagation of noise from OUTPUT1. C) Population-averaged OUTPUT2 values as a function of average
OUTPUT1. For all the CV values, data are fitted with a Hill function (solid line). The estimated parameters are reported in Table 2.
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A CV of 9.4% (for kOUT) was obtained when the same
gene network was tested assuming a lognormal noise
model with constant variance, set to 0.05, 0.1 and 0.15,
which provides different cell-to-cell variability entities,
although not directly comparable to the constant CV
model variability levels (see Additional file 1: Figure S1).
This variability value is again very low. The results
obtained demonstrate that, in the tested network, popu-
lation-averaged data can be used to measure the input-
output transfer function of the NOT gate with a low
variability, even if input devices affected by significantly
different cell-to-cell variability are used. However, it is
important to highlight that the measured parameters are
not identical to the ones used to generate the data
(reported in Table 1), herein called “true” parameters.
The hOUT parameter exhibited the highest maximum
percentage difference (25.7%) for lognormal noise with
constant CV and represents a relatively low difference;
on the other hand, the highest maximum percentage dif-
ference observed for lognormal noise with constant VAR
was for kOUT (61.8%, see Table 2 and Additional file 1:
Figure S1) and represents a higher difference entity. This
high variability in the estimated kOUT parameter might be
due to the high cell-to-cell variability of the 3OC6-HSL-
inducible module around the true kOUT value of the

NOT gate (0.2 RPU, see Additional file 1: Figure S1A),
as opposed to the variability shown in Figure 2A. This
variability propagates and causes higher cell-to-cell varia-
bility in OUTPUT2 when OUTPUT1 is close to kOUT

(compare Figure 2B and Additional file 1: Figure S1B).
The described phenomenon is marked because the NOT
gate is very sensitive to Module 1 output variation, that
is, input values similar to the kOUT parameter are reached
at very low 3OC6-HSL concentrations. This situation
is sometimes desired to create switches with steep
responses [32], but when the input device is affected by
large-entity noise at low-induction levels the NOT gate
could propagate and amplify this noise and the transfer
function parameters of the NOT gate, estimated from
central tendency measures, would also be affected. The
measurement of the steady-state transfer function of
highly-sensitive switches with tuneable upstream mod-
ules also results in the inability to span their full activity
range, that is, OUTPUT2 could never reach its maximum
value δOUT + aOUT even for very low OUTPUT1 values.
In the configuration presented in Figure 2B,C the activity
range of the NOT gate is almost fully covered by OUT-
PUT1, but for low OUTPUT1 values the activity is
already decreasing; this effect can make the estimation of
transfer function parameters difficult in real experiments,
where the number of data points might be limited. The
described effects are widely known and drive the choice
of suitable input devices whose activity range matches
the activity range of the device of interest they are sup-
posed to drive [6,50,51].
Characterization of a LacI/Plac-based NOT gate
We performed the same analysis described above consid-
ering a NOT gate with much lower sensitivity (a LacI/
Plac-based NOT gate was used as Module 2, whose
transfer function parameters are shown in Table 1) to the
input module. The variability entity of estimated para-
meters is very low and the maximum percentage differ-
ence with true parameters is significantly lower (see
Table 2 for estimated parameters) than for the TetR/
Ptet-based NOT gate, yielding a CV of 15.7% (hOUT) and
1.5% (kOUT) in the constant CV and VAR conditions,
respectively. The fitted curves are reported in Additional
file 1: Figure S2 and Figure S3. Even if this difference is
lower, this circuit highlights another widely known limit
in matching input-output activity ranges; in fact, the
lower part of the NOT gate transfer function is not
observable, since OUTPUT1 cannot reach the required
maximum activity (see Additional file 1: Figure S2C and
Figure S3C). As explained above, this effect can compli-
cate the identification of transfer functions in real
experiments.
Characterization of a YES gate
When the NOT gate is replaced by a YES gate, that is, a
device with an opposite logic behaviour, with the same

Table 2. Estimated parameters for Module 2 as a
function of noise model and entity

Parameter: aOUT

[RPU]
δOUT
[RPU]

kOUT
[RPU]

hOUT
[-]

TetR/Ptet (constant CV) 3.00
3.04
3.06
(1%)

0.05
0.04
0.02

0.20
0.23
0.25

(10.5%)

1.96
1.65
1.49

(14.2%)

TetR/Ptet (constant VAR) 2.85
2.87
2.87
(0.4%)

0.04
0.04
0.03

0.27
0.30
0.32
(9.4%)

2.53
2.18
2.18
(0.6%)

LacI/Plac (constant CV) 0.50
0.46
0.43
(6.6%)

0
0.04
0.07

3.20
3.27
3.32
(1.8%)

1.88
1.70
1.60
(8.2%)

LacI-Plac (constant VAR) 0.50
0.50
0.50
(0.2%)

0
0
0

3.22
3.23
3.25
(0.4%)

1.90
1.90
1.89
(0.2%)

A-PA (constant CV) 3.00
3.04
3.06
(1%)

0.05
0.02
0.02

0.20
0.23
0.25

(10.5%)

1.96
1.65
1.49

(14.2%)

A-PA (constant VAR) 2.85
2.87
2.87
(0.4%)

0.21
0.19
0.19

0.27
0.30
0.32
(9.4%)

2.15
2.18
2.18
(0.6%)

Parameters are obtained by fitting population-averaged values of OUTPUT2 as
a function of OUTPUT1 for different noise models and entity, applied to
OUTPUT1. The three values reported in each cell correspond to CV = 0.15,
0.55, 0.75 (for constant CV models) and to VAR = 0.05, 0.1, 0.15 (for constant
VAR models). The CV among the estimated parameters is reported in brackets.
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Hill function parameters as the TetR/Ptet-based NOT
gate (see Table 1), results do not change significantly
when compared to the NOT gate: hOUT is the most
variable (CV of 14.2%) in the constant CV model condi-
tion, while kOUT has the highest CV (9.3%) in the con-
stant VAR model. In both cases variability is very low.
The maximum percentage difference between estimated
and true parameters is also limited, with maximum
values of 25% (hOUT, constant CV model) and 61%
(kOUT, constant VAR model). The fitted curves are
shown in Additional file 1: Figure S4 and Figure S5.
From Additional file 1: Figure S4B and Figure S5B, it is
important to highlight that, since the switch is very sen-
sitive to the input device, the lower part of the curve is
not fully observable and this results in δOUT estimates
with low accuracy. This problem is analogous to the one
observed for the TetR/Ptet-based NOT gate (see above).
Sensitivity analysis
The conditions tested so far depicted different effects
whose entity depends on the specific network considered,
although results do not change by switching the logic of
the module of interest from repression to activation.
Because it is hard to define general rules to analyze the
effects of noise in population-averaged input-output mea-
surements, we performed a sensitivity analysis on the two-
module network with the TetR/Ptet-based NOT gate to
explore the system response for different parameter con-
figurations and to estimate the parameters of highest
impact. For each noise model and entity, two parameters
were tested: hOUT was varied from 0.5 to 3.5 and kOUT

from 0.1 to 2. Results for the constant CV noise model are
shown in Figure 3 in terms of CV among estimated para-
meters and of maximum percentage difference with true
value. The variability among the estimated parameters
appears not to be significantly correlated with kOUT varia-
tions for all the tested values; in particular, the estimated
kOUT and hOUT exhibit a CV between 8% and 15%, while
aOUT has a CV lower than 2.5% (see Figure 3A). The max-
imum percentage difference of estimated parameters
shows the same trend as a function of kOUT, with kOUT

and hOUT exhibiting a difference of 20-30%, while aOUT of
less than 2.5% (see Figure 3B). When considering the
variability of estimated parameters as a function of hOUT,
the CV among kOUT and aOUT appears to be uncorrelated
as above, with a CV below 15% and 2.5%, respectively;
conversely, hOUT exhibits a linear increase of CV, up to
28% for the tested values of varied hOUT (see Figure 3C).
The maximum percentage difference between estimated
parameters and true value shows the same trend as above
as a function of varied hOUT, with a linear trend of hOUT

reaching 45% for the tested values (see Figure 3D).
When considering constant VAR noise model, trends

are different (see Additional file 1: Figure S6). By varying
kOUT values, the CV among estimated parameters is

relatively constant for hOUT and aOUT (below 2%), while
the one of kOUT shows a decreasing trend, which is of
relatively low entity, below 12% (see Additional file 1:
Figure S6A). The maximum percentage difference shows
a similar trend, with kOUT exhibiting a difference up to
120%, with the other parameters showing a difference
below 20% (see Additional file 1: Figure S6B). On the
other hand, by varying hOUT, the CV among estimated
parameters is always relatively low (below 17%); in parti-
cular, kOUT decreases from 17% (for hOUT = 0.5) to about
10%, aOUT decreases from 4% (for hOUT = 0.5) to a value
below 1%, while hOUT shows a U-like trend with a mini-
mum in hOUT = 2.3 (see Additional file 1: Figure S6C).
The maximum percentage difference between estimated
and true parameters also depicts the same U-like trend
for hOUT whose difference varies from 55% to less than
2% (see Additional file 1: Figure S6D); as for the other
parameters, the difference in kOUT is around 60% for all
the tested hOUT values except for hOUT = 0.5 where the
difference is 30%; finally, aOUT shows a minor difference
(below 10%).
Contribution of extrinsic noise
In a realistic framework, noise would also affect OUT-
PUT2. To test this condition, lognormal noise with con-
stant CV was applied to OUTPUT1 (CV of 15%, 55%
and 75%) and OUTPUT2 (CV of 15%) with a correlation
coefficient r, in the two-module network with the TetR/
Ptet-based NOT gate. The results in terms of estimated
parameters variability among the OUTPUT1 noise enti-
ties are reported in Figure 4A. As it was performed
above, the maximum percentage difference between the
estimated parameters and the true ones was also com-
puted and reported as a function of r (see Figure 4B).
For comparisons, the true aOUT and δOUT parameters
were rescaled as indicated in Eq.10 to consider the aver-
age value of multiplicative lognormal noise which is dif-
ferent from 1 (see Methods section for details). Results
depict that the variability and percentage difference in
hOUT and aOUT are not affected by r, showing a con-
stant CV of about 15% for hOUT and 1.5% for aOUT (see
Figure 4A) and a maximum percentage difference of
about 25% for hOUT and 6% for aOUT (see Figure 4B).
On the other hand, considering kOUT, CV and maximum
percentage difference are affected by r, both showing a
2-fold decrease from r = 0 to r = 1. In particular, a lin-
ear decrease of CV from 10% to 6% (see Figure 4A) and
a decrease of percentage difference from 25% to 12%
(see Figure 4B) are observed.
By assuming a constant VAR model for OUTPUT1

(VAR values of 0.05, 0.1 and 0.15) and OUTPUT2, (VAR
value of 0.15), variability and percentage difference trends
are different from the constant CV case (see Additional
file 1: Figure S7). In this case, CV does not show any
strong trend as a function of r, except for kOUT which
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shows a variability decrease from 10% to 6% (see Addi-
tional file 1: Figure S7A); in contrast, the maximum per-
centage difference between true and estimated hOUT

parameter shows a 3-fold linear increase, from 10% (for r
= 0) to 30% (for r = 1); kOUT shows a decreasing trend of

high entity, from ~62% (for r = 0) to 30% (for r = 1);
finally, aOUT does not exhibit specific trends and shows a
difference value below 10%.
The same process was performed by considering the

YES gate instead of the TetR/Ptet-based NOT gate and

Figure 3 Sensitivity analysis for the two-module network with the TetR/Ptet-based NOT gate, when OUTPUT1 is affected by constant
CV noise: variability among the estimated parameters and maximum percentage difference between estimated and true parameters.
CV among the estimated parameters (A,C), and maximum percentage difference between estimated and true parameters (B,D) for different
values of kOUT (A-B) and hOUT (C-D). CV was computed among the parameters estimated for noise CV = 0.15, 0.55 and 0.75.

Figure 4 Analysis of the two-module network with the TetR/Ptet-based NOT gate, when OUTPUT1 and OUTPUT2 are affected by
constant CV noise with correlation coefficient r. A) Variability among the estimated parameters, in terms of CV. B) Maximum percentage
difference between estimated and true parameter values. All the results are shown as a function of the correlation coefficient r, which is varied
from 0 (no correlation) to 1 (maximum correlation). The increase of r value simulates an increase in proportion of the extrinsic component of
noise over the total noise, which is composed of the intrinsic and extrinsic components.
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the results, shown in Additional file 1: Figure S8, do not
quantitatively change for constant CV noise model (see
Additional file 1: Figure S8A, B), but for constant VAR
noise the maximum percentage difference of all the
parameters increases as a function of r, while the CV
among the estimated parameters shows a low variability,
up to 10% (see Additional file 1: Figure S8C, D).
Overall, the presence of an extrinsic component in the

total noise can improve the accuracy in the estimation
of some transfer function parameters, by decreasing the
variability of the kOUT parameter in different noise
model and entity conditions, and by decreasing the
maximum percentage difference between estimated and
true kOUT parameter for the NOT gate; however, the
maximum percentage difference of the hOUT parameter
for the NOT gate increases for increasing values of r
and, in the case of the YES gate with constant VAR
noise, the CV of hOUT and the maximum percentage
difference of all the three parameters increases with r.
These results demonstrate that changing the logic of the
module of interest can affect the overall results when
correlated noise is assumed. A possible explanation of
these results is that a correlated noise model propagates
the variability of OUTPUT1 in a different way as a func-
tion of Module 2 logic. In fact, the cell-to-cell variability
observed for r = 0 decreases for r = 0.5 (a realistic pro-
portion of extrinsic noise component [26]) when consid-
ering the NOT gate with constant VAR model (see
Additional file 1: Figure S9A and Figure S9B), while it
increases when considering the YES gate (see Additional
file 1: Figure S9C and Figure S9D). The same trend is
also observed for constant CV noise (see Additional
file 1: Figure S10A-D). This effect is probably due to the
amplification of noise by the YES gate for increasing
correlation values, since r>0 and Module 2 has an
increasing activity as a function of OUTPUT1; on the
other hand, the NOT gate decreases the inter-individual
variability, since it has a decreasing activity as a function
of OUTPUT1, thus compensating for the noise applied
upstream.

Input-output function identification for an interconnected
network
In contrast to the previous section, where the aim was
to identify the transfer function of a single module, in
this case the input-output function of a three-module
interconnected network (see Figure 1C) is identified as a
black-box, whose behaviour is described by the Hill
equation (Eq.16):

OUTPUT3 = δ∗
OUT +

α∗
OUT

1 +
(

k∗
OUT

3OC6 − HSL

)η∗
OUT (16)

where 3OC6-HSL is the input, OUTPUT3 is the out-
put of the whole network and parameters α∗

OUT, δ∗
OUT,

k∗
OUT and η∗

OUT have the same meaning as in the Meth-
ods section.
Three-module network prediction from individually-
characterized modules
We performed simulated experiments where: i) the
transfer function of each single module was identified
from population-averaged values (as performed in the
previous section) and ii) the identified transfer functions
were used to predict the black-box input-output func-
tion of the interconnected network. This process was
repeated for each noise model and entity considered
and Hill equation parameters were estimated for the
black-box transfer function.
Considering the two-module networks with TetR/Ptet-

and LacI/Plac-based NOT gates (see Figure 1A), the
parameters reported in Table 1 were used to generate
data, assuming the constant CV and VAR noise models,
only applied to OUTPUT1 (see Figure 1D). From an
experimental point of view, the described procedure aims
to simulate the transfer function learning for individual
modules via central tendency measures (on two-module
networks), and the prediction of the population-averaged
output of a complex function (a three-module network)
built up by interconnecting such modules.
The parameters describing the transfer function of indi-

vidual modules were obtained previously (see Table 2),
while the estimated black-box function parameters are
reported in Table 3 with their CV. In practice, the TetR/
Ptet- and the LacI/Plac-based NOT gate transfer functions
were identified assuming the noise model and entity
reported in Table 2 thus obtaining different parameter
estimates; then, the black-box transfer function of the
three-module network was predicted by using the TetR/
Ptet- and the LacI/Plac-based NOT gate transfer functions
with these parameter sets, thus obtaining 9 transfer func-
tion combinations for each noise model (see Table 3).
These results depict that the resulting variability is

very low, with the highest CV value for k∗
OUT, 16% and

11.3%, in the constant CV noise model and in the con-
stant VAR model, respectively.
Comparison between network predictions from
individually-characterized modules and deterministic
output of the circuit
As already discussed in the case of the characterization
of a single module, the parameters obtained in the pre-
vious study can be different from the ones estimated in
a deterministic framework (reported in Table 4), that is,
without noise. For this reason, their maximum percen-
tage difference was computed. In both the constant CV
and VAR noise models, the k∗

OUT parameter is affected
by the highest difference (68.3% and 90.2%, respectively),
thus showing a moderately high deviation. Conversely,
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the other parameters give a maximum difference of
24.8% and 8.3%, both on η∗

OUT, in the constant CV and
VAR case, respectively. This deviation indicates that, in
the investigated system with the specific parameters and
noise assumed, the contribution of noise is significant;
for this reason, given the knowledge of the real transfer
functions of the modules, the input-output function
identification of the whole network is affected by a max-
imum error of 68.3% (constant CV) or 90.2% (constant
VAR) if noise is not considered.
Comparison between network predictions from
individually-characterized modules and network output
generated in the presence of noise
To extend the study on the three-module network,
another simulated experimental study was performed.

The parameters of the black-box function predicted
from central tendency measures (reported in Table 3)
were compared to the parameters of the black box func-
tion simulated by using the network of Figure 1H (gen-
erated by using the parameters of Table 1). In the latter
case, as indicated in Figure 1H, noise was applied to
both OUTPUT1 and OUTPUT2, and the α∗

OUT, δ∗
OUT,

k∗
OUT and η∗

OUT parameters were estimated from popula-
tion-averaged OUTPUT3 measures (see Table 5); only
constant CV noise was considered and applied with dif-
ferent entities (CV of 0.15, 0.55 and 0.75). In practice,
the 9 parameter sets combinations reported in Table 3
were compared to the 9 parameter sets combinations
reported in Table 5. The identification results show that
very low variability occurs among the estimated para-
meters (see CV in Table 5). When comparing the 9
parameter sets of Table 3 to the 9 sets of Table 5 (thus
performing 81 comparisons), the maximum percentage
difference was 65.9% (for the k∗

OUT parameter) that was
observed in the comparison between the condition
where noise with a CV of 0.15 affects OUTPUT1 in the
identification step of both the TetR/Ptet- and the LacI/
Plac-based NOT gates (see Table 3), and the network
condition in which OUTPUT1 and OUTPUT2 are both
characterized by a noise with a CV of 0.75, which pro-
pagates towards OUTPUT3 (see Table 5). This result
indicates that if the transfer function of individual mod-
ules is identified via central tendency measures data
when noise is low (CV of 15%) and these learnt func-
tions are used to predict the output of the three-module
network, the outputs have a maximum difference of
65.9% (estimated on the k∗

OUT parameter) if the network
is affected by a noise of larger entity on both OUTPUT1

Table 3. Estimated parameters for the three-module
network considered as a black-box function, for different
noise models and entities, when the function is predicted
from individual transfer functions derived from central
tendency measures

Parameter: α∗
OUT

[RPU]
δ∗
OUT
[RPU]

k∗
OUT
[nM]

η∗
OUT
[-]

constant CV 0.22
0.20
0.19
0.22
0.20
0.19
0.22
0.20
0.19
(6.5%)

0.28
0.30
0.31
0.28
0.30
0.31
0.28
0.30
0.31

16.86
18.51
19.53
20.00
22.25
23.67
23.03
25.84
27.63
(16%)

1.75
1.69
1.65
1.53
1.48
1.45
1.42
1.37
1.34
(9.7%)

constant VAR 0.22
0.22
0.21
0.22
0.22
0.22
0.22
0.22
0.22
(0.8%)

0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28

23.98
23.96
23.97
27.73
27.70
27.72
31.22
31.19
31.21
(11.3%)

1.90
1.90
1.89
1.92
1.92
1.92
1.92
1.92
1.92
(0.7%)

Parameters are obtained by fitting population-averaged values of OUTPUT2 as
a function of OUTPUT1 for different noise models and entity, applied to
OUTPUT1. The 9 values reported in each cell correspond to a noise entity
(which affects OUTPUT1 in the identification step of the TetR/Ptet- and LacI/
Plac-based NOT gate transfer function, respectively) of CV = 0.15-0.15,
0.15-0.55, 0.15-0.75, 0.55-0.15, 0.55-0.55, 0.55-0.75, 0.75-0.15, 0.75-0.55,
0.75-0.75 (for constant CV models) and to VAR = 0.05-0.05, 0.05-0.1, 0.05-0.15,
0.1-0.05, 0.1-0.1, 0.1-0.15, 0.15-0.05, 0.15-0.1, 0.15-0.15 (for constant VAR
models). The CV among the estimated parameters is reported in brackets.

Table 4. Estimated parameters for the three-module
network considered as a black-box function, without
noise affecting the network

α∗
OUT

[RPU]
δ∗
OUT
[RPU]

k∗
OUT
[nM]

η∗
OUT
[-]

0.22 0.28 16.42 1.78

Parameters are obtained by fitting deterministic values of OUTPUT3 as a
function of 3OC6-HSL.

Table 5. Estimated parameters for the three-module
network considered as a black-box function, for different
noise entities and constant CV noise model, when the
function is simulated by using the three-module network
of Figure 1H

Parameter: aOUT

[RPU]
δOUT
[RPU]

kOUT
[RPU]

hOUT
[-]

constant CV 0.22
0.22
0.22
0.20
0.20
0.20
0.19
0.19
0.19
(6.5%)

0.28
0.28
0.28
0.30
0.30
0.30
0.31
0.31
0.31

16.90
20.78
24.42
18.90
23.10
25.91
19.32
23.71
27.97
(16.2%)

1.73
1.41
1.26
1.73
1.41
1.22
1.66
1.38
1.24

(14.3%)

Parameters are obtained by fitting population-averaged values of OUTPUT2 as
a function of OUTPUT1 for different noise models and entity, applied to
OUTPUT1. The 9 values reported in each cell correspond to a noise (which
affects OUTPUT1 and OUTPUT2, respectively) of CV = 0.15-0.15, 0.15-0.55,
0.15-0.75, 0.55-0.15, 0.55-0.55, 0.55-0.75, 0.75-0.15, 0.75-0.55, 0.75-0.75. The CV
among the estimated parameters is reported in brackets.

Politi et al. BMC Systems Biology 2015, 9(Suppl 3):S6
http://www.biomedcentral.com/1752-0509/9/S3/S6

Page 12 of 15



and OUTPUT2. This can be considered as a low-entity
difference (less than 2-fold) when compared to the
possible large prediction errors performed when pre-
characterized modules are interconnected and tested
[6,15,18,39].
Supplementary results are reported in Additional file 1

where a two-module network including the TetR/Ptet-
based NOT gate (see Figure 1A) is also studied via an
analogous procedure and a sensitivity analysis is per-
formed on its structural parameters.

Conclusions
In this work we have evaluated the contribution of noise
in two different situations, via simulated in silico studies.
First, we have tested the identification of an individual

module (a NOT gate) via an interconnected network
composed of two modules. The results highlighted that
central tendency measures can be used accurately to
summarize the transfer function of the single module,
since the estimated parameters are affected by a low CV
(up to 14.2%). However, a larger percentage deviation (up
to 61.8%) is observed when comparing the estimated
parameters with the true ones, which generated the data.
For these reasons, the expected differences (caused by
noise) in transfer function identification when using dif-
ferent input devices upstream are low, while an accurate
measurement of the true transfer function requires, in
addition, the full knowledge of noise.
All these results have been found to be dependent on

the structural parameters of the module of interest and,
for this reason, a sensitivity analysis was carried out to
elucidate the CV and maximum percentage difference
trends as a function of such parameters. On the other
hand, the logic of the module of interest was not impor-
tant in this step, since the replacement of a NOT gate
with a YES gate with the same structural parameters
does not change the conclusions. Model refinement,
including an extrinsic component of noise, also eluci-
dated a trend in CV and maximum percentage difference,
which, in this case, are logic-dependent.
For the above reasons, in the considered case studies

noise should be included in models if the aim is to estimate
the real parameter values of individual transfer functions.
This requires the knowledge of noise model, which can be
inferred, for example, by flow cytometric analyses. How-
ever, if the aim is to characterize and re-use a biological
module, noise can be omitted since different noise entities
(generated by the input module used for the characteriza-
tion purpose) do not provide significant changes in esti-
mated parameters. As a result, in the tested conditions, the
noise of an input module is not responsible for changes in
the estimated parameters of the module of interest.
Second, we have tested the identification of a black-

box input-output function predicted by interconnecting

the three genetic modules that were previously charac-
terized in silico, in the presence of noise, via central ten-
dency-based measurements to identify their transfer
function. Noise entity did not significantly affect the
input-output function identification. However, as
observed before for the single module identification,
noise significantly affects the percentage difference
between estimated input-output function and the func-
tion obtained in absence of noise (up to 90.2%).
As a last study involving the black-box input-output

transfer function of a three-module network, we compared
the black-box function predicted by using the individual
modules identified from data generated with different
noise entities affecting OUTPUT1, and the black-box func-
tion simulated by using different noise entities affecting
OUTPUT1 and OUTPUT2. A maximum percentage dif-
ference of 65.9% was observed. This has high relevance in
the bottom-up design of gene networks with predictable
function. In fact, this difference represents the maximum
variability, considering noise as the sole variability source,
that can be observed between i) the prediction of the
black-box function of a network from the knowledge of
individual modules and ii) a black-box function that is
generated by the same modules, when the noise affecting
the identification step is different from the noise in the
final circuit context. The changing of cell-to-cell variability
entity when the context is different is a common situation
in biological engineering, in which characterized modules
are re-used in different contexts to engineer complex
interconnected networks.
The same results were confirmed on a two-module

network, on which a sensitivity analysis is also reported
(see Additional file 1: Supplementary results).
As anticipated above, all the obtained results were

dependent on the specific network parameters used; for
this reason, the conclusions obtained in this work are
confined to the topology and parameter ranges here
assumed, although the work can be easily extended to
study different systems, according to biological engineers’
needs.
On the other hand, in the working context described

above, the relevance of this study is high in biological engi-
neering, since it can effectively guide the experimental
work of systems and synthetic biologists to carry out suita-
ble in vivo measurements (population/central tendency-
based approaches or single-cell ones) and it can be a cru-
cial tool to accurately distinguish actual non-modular and
unpredictable phenomena from the effects due to noise in
the interconnection of biological parts to construct com-
plex gene networks from the bottom-up. As a practical
example, in one of our experimental studies [6] we found
a CV of 44% (for the kOUT parameter) when the transfer
function of a TetR/Ptet-based NOT gate was identified
from population-based measurements, performed via
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different input devices assembled upstream. The NOT
gates drove the expression of a reporter gene to easily
visualize the output. Experimental measurements con-
sisted in population-based fluorescent protein quantifica-
tion in recombinant cultures. A microplate reader was
used to incubate cultures and perform absorbance and
fluorescence measurements. Considering the exponential
growth phase of bacterial cultures, absorbance and fluores-
cence time series were processed to obtain an individual
value representing the activity of the NOT gate device,
expressed as Relative Promoter Units (RPUs), in response
to different input devices and induction levels. Although
the cell-to-cell variability was not experimentally measured
for the input devices outputs, we can conclude that
the CV among the estimated kOUT parameters of the
NOT gate could not be caused by the sole noise (which
gives contributions up to ~14%), thus highlighting a non-
modular behaviour of the used components, although, in
principle, part of the total variability could be caused by
heterogeneity of cells. By refining the study with the char-
acterization of the cell-to-cell variability of each individual
module, the knowledge of the true NOT gate parameters
can be obtained, since the ones estimated in the presence
of noise can deviate from the true ones (according to this
study, by a maximum percentage difference of ~62%). As
gene networks with the architecture studied in this work
are widely used in synthetic biological circuits, the pro-
posed approach can be useful to support the characteriza-
tion and re-use of modules in different circuits and to
support the prediction of interconnected circuit output.
It is worth noting that cell-to-cell variability is a very

complex element, which (given a gene network) may be
dependent on the specific strain and environmental con-
text [3], dynamics of gene expression and specific bio-
logical processes [29]. Finally, cell-to-cell variability may
not be solely explained by intrinsic and extrinsic noise,
but it might depend on bistability effects in gene regula-
tory networks [52] or on the evolutionary context that
has been found to significantly affect the quantitative
behaviour of single cells in several experimental studies,
by increasing the failure rate of a biological function
[3,44,49,53,54].
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