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Abstract

Background: Nowadays multidisciplinary approaches combining mathematical models with experimental assays
are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches
are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem
Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and
modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory.
More generally, to acquire new insights on a biological system it is necessary to have an accurate description of
the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this
context, the identification of the parameters influencing model dynamics can be advantageous to increase model
accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods
to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the
availability and quality of experimental data, and the dimension of the parameter space.

Results: The study of a new model on the CSC-based tumor progression has been the motivation to design a
new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing
such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of
describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress
through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback
mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be
studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the
parameters which influence the tumor growth. The effectiveness of the presented work-flow was firstly verified on
two well known models and then applied to investigate our extended CSC model.

Conclusions: We propose a new work-flow to study in a practical and informative way complex systems, allowing
an easy identification, interpretation, and visualization of the key model parameters. Our methodology is useful to
investigate possible model behaviors and to establish factors driving model dynamics.
Analyzing our new CSC model guided by the proposed work-flow, we found that the deregulation of CSC
asymmetric proliferation contributes to cancer initiation, in accordance with several experimental evidences.
Specifically, model results indicated that the probability of CSC symmetric proliferation is responsible of a
switching-like behavior which discriminates between tumorigenesis and unsustainable tumor growth.

* Correspondence: beccuti@di.unito.it
† Contributed equally
1Department of Computer Science, University of Torino, Torino, Italy
Full list of author information is available at the end of the article

Fornari et al. BMC Systems Biology 2015, 9(Suppl 3):S1
http://www.biomedcentral.com/1752-0509/9/S3/S1

© 2015 Fornari et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:beccuti@di.unito.it
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The use of mathematical models to investigate biological
systems is becoming progressively crucial to better
understand their complex behaviors [1]. One of the
remarkable results obtained through mathematical mod-
els is the suggestion of when and how cell fate deter-
mines the outcome of the phenomenon under study.
For instance, in cancers it is crucial to characterize

when and how cells provide a balance between stem
cells and daughter-cell lineages, since cell heterogeneity
significantly contributes to tumor progression and
maintenance. In this context, the acquisition of the
tumor microenvironment concept has contributed to
define a new generation of hallmarks of cancer [2],
which extended the original ones [3] incrementing the
complexity of the tumor biology. Specifically, different
cell types make up tumor microenvironment which, on
turn, preserves cell heterogeneity and provides regula-
tions of cell individuality and cell collective functions.
This continuous and finely tuned interplay can pro-
mote cancer outbreak, sustain tumor development and
invasion, and provide niches for Cancer Stem Cells
(CSCs) [4]. CSCs are defined as cells that possess
the capacity to both self-renew and to generate the
heterogeneous lineage of cancer cells comprising
the tumor [5]. Moreover, they are considered cancer-
promoters thanks to their ability of developing new
tumors upon inoculating them into host mice [6].
Many evidences point out that CSCs drive tumor
growth and evolution of several human cancers, such
as lung [7], brain [8], colon cancers [9], etc.
In this paper we focus on CSC-based tumors, which

have been largely investigated through approaches com-
bining wet-lab experiments and mathematical techniques,
as demonstrated by several papers [10-13]. CSC-tumors
are hierarchically structured and characterized by different
subpopulations of cells: CSCs, Progenitor Cells (PCs), and
Terminal Cells (TCs). This heterogeneity influences both
cancer progression and response to treatments, making
fundamental the full understanding of the mechanisms
underlying the CSC hierarchy [14]. In particular, the alter-
nation of symmetrical vs. asymmetrical CSC division and
the way in which feedback mechanisms - induced by
microenvironmental changes - affect the tumor growth
have been investigated in several papers [15-17]. However,
it is not clear how the balance between the CSC asym-
metric and symmetric division rates is maintained in order
to preserve a constant level of CSCs in tumors and, at the
same time, generate more differentiated cells.
To investigate this issue, we expanded our linear

Ordinary Differential Equation (ODE) model on the
initial phase of CSC-cancer growth [18] describing each
stage of tumor progression. Our extended model is

composed of CSCs, PCs, TCs and Dead Cells (DCs) sub-
populations and it accounts for the tumor microenvir-
onment effects, which can be modeled as mechanisms
of auto growth limitation expressed by feedback controls
on cell division. In our model tumor cells are assumed
to progress through lineage stages like those of normal
evolution, and a bounded cell division is introduced.
These new features have introduced some non-linear-
ities in the model, making it more difficult to be studied
by solely analytical techniques. Thus, we have proposed
a new analysis work-flow that helps to characterize sys-
tem behaviors and to identify those parameters influen-
cing such behaviors. The techniques that we have used
range from statistical methods (as sensitivity analysis) to
analytical studies (as bifurcation analysis). Their applica-
tions depend on case-specific aspects, such as the avail-
ability and quality of experimental data, and the
dimension of the parameter space as well.
Therefore, the aim of this paper is twofold: (i) to

extend our previous model on CSC-tumor growth -
including more complex dynamics in the ODE system -
and (ii) to provide a work-flow for the analysis of this
class of models, using state of the art methodologies for
sensitivity analysis [19].
Although the proposed methodology has been

designed to study our tumor-growth model, it is not
cancer specific. It could be applied to study dynamical
systems in general, and to help in assessing parameter
influences on ODE model dynamics. Moreover, the
identification of key model parameters could also pro-
vide hints to design new experiments that might
enhance the knowledge of the phenomenon under
study.

Materials and methods
Population model
In Fornari et al. [18] we presented a system of ODEs
focused on the description of the initial phase of CSC-
tumor progression. The proposed model was linear and,
consequently, its predictions relative to cell homeostasis
were sensitive to small differences in parameter values.
Indeed, to achieve homeostasis in any physical or biolo-
gical system, feedback mechanisms are necessary to
maintain stability in the face of infinitesimal parameter
changes.
Here, we present an extension of our model, which

accounts for stable cell homeostasis and considers cell
subpopulation dynamics during the cancer growth. This
has required to introduce: (i) a new cell subpopulation
called Dead Cells (DCs) and (ii) a feedback control of
cell number.
In details, the cell subpopulation dynamics are

described through the following ODE system:
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dNCSC

dt
= PsyωCSCNCSC + γPCNPC1 − η1NCSC − δ1NCSC

dNPC1

dt
=

(
1 − Psy

)
ωCSCNCSC − ωPCNPC1 − γPCNPC1 + η1NCSC − η2NPC1 − δ2NPC1

dNPC2

dt
= 2ωPCNPC1 + η2NPC − η2NPC1 − δ2NPC1

dNTC

dt
= η3NPC2 − δ3NTC

dNDC

dt
= δ1NCSC + δ2

(
NPC1 +NPC2

)
+ δ3NTC − δ4NDC

where NCSC , NPC , NTC and NDC are the total number
of CSCs, PCs, TCs and DCs, respectively. Notice that we
have modeled the PC subpopulation as made by two dif-
ferent levels: PC1 and PC2, i.e. NPC = NPC1 +NPC2. Possi-
ble cell behaviors are regulated by specific rates
expressed through the following phenotypic parameters:
Psy for the probability of symmetric CSC division; ωCSC ,
ωPC for CSC and PC1 proliferation; h1, h2 and h3 for CSC,
PC1 and PC2 differentiation; gPC for PC1 de-differentiation;
δ1, δ2 and δ3 for CSC, PC, and TC death, while δ4 is used
to determine the DC lysis.
A graphical representation of the cellular dynamics

described by system (1) is provided by Figure 1.
Auto-growth limitation mechanism Several papers

[16,20] indicate that a computational model describing
the growth of a CSCs-based tumor must take into
account also the effects of the physical tumor microenvir-
onment, which can be modeled as a feedback mechanism
modulating phenotypic parameters. Therefore, to
account for this cellular auto growth limitation, we intro-
duced some feedback regulatory mechanisms to control
division of CSCs and PC1s. In particular, their prolifera-
tion parameters ωCSC and ωPC were defined as:

ωCSC → ωCSC

1 + hCSCNTC
, ωPC → ωPC

1 + hPCNTC
, (2)

where hCSC and hPC correspond to the feedback inten-
sities. Namely, CSC and PC1 proliferation rates now

depend on the TC number, which is in agreement with
the knowledge that the growth and progression of can-
cer cells depend not only on their intrinsic malignant
potential, but also on a mutual and continuous dialog
among them and the tumor microenvironment [4].
Indeed, the growth conditions of CSCs are influenced
by blood supplies, growth factor and, in particular, local
cell types. Considering several experimental observations
[16,15] we parameterize this knowledge by specifying
with equations (2) a bounded cell division regulated by
the density of TC subpopulation.
Finally, note that the introduction of the auto growth

mechanism makes the ODE system (1) non linear.

Methodology
In this section we describe the methodology developed to
study our complex model showing how it is sufficiently
general and powerful to be effectively applied when the
presence of uncertainties in experimental data makes the
analysis of biological models extremely complicated.
The general outline of our methodology can be sum-

marized by the following three main phases which will
then be subsequently commented in detail:

1 input/output characterization
1.1 sampling of model inputs through the Latin
Hypercube Sampling (LHS) technique;
1.2 investigation of possible model behaviors
deriving from different parameter samples, i.e.
creation of model outputs;

2 key parameter identification
2.1 evaluation of Partial Rank Correlation Coeffi-
cients (PRCCs) between model parameters
(inputs) and model behaviors (outputs), at differ-
ent time points;

Figure 1 CSC-based tumor model. Simplified schematic representation of the cell subpopulation dynamics and interactions. The proliferative
potential and differentiation degree are highlighted for each subpopulation: moving from the CSC compartment to the TC one, cells became
more differentiated and lose their proliferative ability.
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2.2 identification of model parameters and time
points which need to be carefully studied;

3 key parameter analysis
3.1 colored visualization of model outputs (i.e. vari-
able values over time) with respect to the values of
“key” parameters identified during the previous
step;
3.2 creation of scatter plots representing model
outputs (at designated time points) versus para-
meter values, colored in accordance with key
parameter values;
3.3 accurate characterization of the role of the
selected parameters through analytical techni-
ques (as bifurcation analysis).

The application of the LHS method and PRCC analysis
may be performed starting from Matlab functions
described in [19], enhanced to extend their analysis cap-
abilities of specific parameters by plotting graphs colored
according to key parameter values. Bifurcation analysis
may be performed using the graphical Matlab package
MatCont.
Input/output characterization
The temporal behavior of a deterministic model (i.e.
model output) is completely determined by its structure
and by the values of its parameters (i.e. model input)
[21]. Unfortunately, due to their intrinsic biological
variability, parameter values are usually not completely
determined and often measured with low accuracy,
making them difficult to be estimated. Therefore, it is
crucial to have techniques which allow to explore model
behaviors resulting by changes of parameter values, such
that it would be possible to investigate the uncertainty
of model outputs deriving from the uncertainty in para-
meter inputs (Uncertainty Analysis - UA) [22]. Monte
Carlo (MC) methods, which are based on probabilistic
sampling procedures, are often used to develop a map-
ping from model inputs to model outputs and to per-
form UA. More precisely, in a MC simulation multiple
model evaluations are performed using random numbers
to sample from probabilistic distributions of model
inputs. Many papers are published in the literature to
discuss these approaches, and several sampling strategies
are available and immediately implementable [23,24].
One of the most used MC method is the Latin Hyper-
cube Sampling (LHS), which is a stratified sampling
without replacement technique that generates sets of
parameter values from a multidimensional distribution
[25,26]. More precisely, for each model parameter the
sampling process is driven by a probability density func-
tion (pdf), which frequently corresponds to the uniform
distribution. The uniform pdf is adopted in the follow-
ing two main cases: (i) when it is known only a putative
range for the parameter values; (ii) when it is useful to

have a homogeneously spread set of parameter values
within an interval of interest. Instead, when some
knowledge suggesting the expected value of a parameter
is available, a normal distribution can be used. For both
distributions, a set of baseline parameter values is
required to start the sampling process. LHS provides a
good coverage of each parameter variability by dividing
each parameter range into n (sample size) equal-prob-
ability subintervals, which are sampled exactly once.
Notice that, there is no a priori exact rule for determin-
ing n, which - in general - should be greater than k + 1
(k is the number of model parameters). LHS method
also assumes that the sampling is performed indepen-
dently for each parameter. After this process, a n × k
matrix (LHS matrix) is generated, containing the n
sampled sets of values for all the k model parameters, as
showed by Figure 2, panel A.
Starting from these input values, each row of the LHS

matrix is used as an input to numerically integrate the
system over the time interval T = [tini, tend], and thus pro-
ducing n time-dependent model solutions. The time
points are selected to homogeneously cover the time
interval of interest. If specific time subintervals are
known to be relevant, they can be investigated increasing
the number of time points in these subintervals of T.
Model outputs (matrix Y) are then collected for each
experiment considering the different time points of T ,
such that model temporal behaviors (i.e. model traces)
can be derived. Specifically, a plot providing a graphical
representation of these time-dependent traces is pro-
duced for each parameter combination, as sketched in
Figure 2, panel A.
Key parameter identification
To identify critical inputs and to quantify how they
impact model outcomes, Partial Rank Correlation Coeffi-
cients (PRCCs) between model parameters (LHS matrix)
and model outputs (Y matrix) are evaluated on the inter-
val T . Indeed, PRCC measures monotonic relationships
between outputs and inputs and it provides a measure of
monotonicity after the removal of the linear effects of all
but one variable [26]. Considering multiple time points,
PRCCs between model variables and model parameters
are evaluated and plotted, as shown in Figure 2, panel B.
PRCC analysis is done in an exploratory way to identify
any significant relationships throughout the entire time
course, and to point out whether correlations occur
either over the entire time interval, or at specific time
points. Since even small correlations may be significant,
statistical tests assessing if the PRCCs are different from
zero are also performed [19]. Details on the indexes that
can be used are provided in [27].
PRCC analysis and corresponding significance tests are

then used to identify key model parameters and to select
time points which need an in-depth study. Specifically,
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Figure 2 Sketch of the methodology. The proposed methodology consists of three main phases: (i) input/ouput characterization, (ii) key
parameter identification, and (iii) key parameter analysis. Panels provide a general outline of each phase through a graphical representation of
the proposed work-flow. Panel A - input/output characterization: model inputs are sampled (LHS technique) and then, starting from these values,
model solutions are evaluated over time thus investigating possible model behaviors. Panel B - key parameter identification: monotonic
relationships among model inputs and outputs are revealed with PRCC analysis over time, thus identifying key model parameters and time
points where to expand the analysis. For each selected time, PRCCs and their significance (p-values) are provided. The yellow area shows non
significant PRCCs. Panel C - key parameter analysis: C1. values of key parameters are partitioned into r equal intervals, and each interval is
associated with a different color, thus designing a color-code. C2: model traces (i.e. time dependent outputs) are then colored following the
color-code, thus highlighting the role of the selected parameter. Notice how the high concentrations of model outputs is mainly characterized
by green lines, i.e. by high values of the key parameter. C3: relations among model outputs and key parameters are further emphasized by
scatter plots (at a fixed time point), colored following the color-code.
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among all model parameters, only those with high and
significant PRCCs for all variables are further investi-
gated, and the analysis starts from those parameters
having the highest PRCCs values. More precisely, PRCC
values close to 1 (-1) identify positive (negative) mono-
tone relationships between inputs and outputs, by defi-
nition. In addition, significance tests allow to discover
those correlations that are important, despite having
relatively small PRCC values, namely those correlations
that have significant p-values. In this phase of the study
it is crucial the role of the analyst who, considering the
PRCCs and p-values, decides on which parameters focus
the study, and whereas focus it on the whole time inter-
val or on specific time points. A general criterion to
guide this process is difficult to be defined, since it
strongly depends on the peculiarities of the model
under investigation.
Key parameter analysis
After the identification of the relevant model parameters,
a detailed analysis of their effects on model outputs is
performed as concluding step of our methodology. For
the sake of simplicity we will describe this process con-
sidering only one relevant parameter, that we will call p1.
The proposed approach can however be easily extended
to a set of relevant parameters, {p1, ..., pk }, reproducing
such analysis k times and then cross-analyzing the
results. An example of cross-analysis is provided in our
second case study (i.e. the apoptosis model), where two
relevant parameters have been identified and their cross-
analysis have been necessary to explain model bistability.
The variation range of parameter p1 is divided into r

subintervals, such that the p1’s possible values are parti-
tioned into r levels. The choice of r depends on several
factors, such as the variation range of the parameter and
its expected qualitative behavior. Similarly to the adaptive
numerical methods, an adaptive partition could be
defined with a varying r, such that the most a parameter
is critical in a region, the smallest r is set to cover that
region. Then, as shown in Figure 2 - panel C1, a specific
color is assigned to each of these levels and model traces
are colored accordingly to this classification. Specifically,
each model trace is colored in accordance with the p1
value used for its computations, i.e. each trace has the
same color of the subinterval whom its p1 value belongs
to; see Figure 2, panel C2. This new representation turns
out to be very effective in showing how particular model
behaviors, such as switches, bistabilities, etc., are related

to the p1’s variation. This visualization of model beha-
viors can thus be considered as a preliminary, but effec-
tive, analysis of the role that p1 plays in the global model
dynamics.
The subsequent step consists in expanding the analy-

sis at selected interesting time points, i.e. at those points
which are known to be crucial for the problem under
investigation, or which have been previously detected as
relevant in PRCC analysis. Scatter plots of model out-
puts versus p1 values (or other relevant parameters, or
combinations of them) are evaluated and colored in
accordance with the parameter variation range. As
depicted in Figure 2, panel C3, colored scatter plots
enable a simple and direct visual detection of correla-
tions between model inputs and outputs, emphasizing
the role of p1.
Let us note that when few parameters are identified as

relevant for model dynamics, the previous analysis is
performed for each of them trying to discover multiple
dependencies.
Finally, after having identified in a qualitative manner

the key model parameters, an analytic study is per-
formed to obtain an accurate characterization of the
actual role of these parameters using more sophisticated
mathematical techniques, such as bifurcation analysis.

Results
Before using our methodology to explore the dynamics
of the extended CSC-tumor model (1), we verified the
effectiveness of this approach on two well-known and
experimentally validated models by Tyson et al [28].
These models - that describe the oestrogen signalling
network in breast epithelial cells - have been widely stu-
died by Tyson and coworkers, exhibit bistable switches,
and are among the reference models in mathematical
biology.
The following sections report the results of our

numerical experiments, whose settings are summarized
in Table 1. In all cases we performed LHS using uni-
form distributions to have spread and un-biased samples
of parameter values. In particular, when referred to
models proposed by Tyson, this choice allowed to test
our approach in a “blind” manner without taking advan-
tage of knowledge that has already been published in
the literature. Moreover, we partitioned all parameter
intervals using r = 4 equal subintervals to start from
informative divisions which were also easy to manage.

Table 1. Settings of numerical experiments

Model n pdf var (%) baseline values T t r

cell cycle 1000 unif ±25 [28] [0, 50] 50 4

apoptosis 1000 unif ±30 [28] [0, 500] 500 4

population 1000 unif ±50 Additional File 10 200 [0, 200] 4
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In all cases this choice (i.e. r = 4) provided sufficiently
confined but explanatory partitions, which did not
require further refinements. The general color code that
we used in all cases is: (i) black for values in

I1 =
[
min,

1
4

(max − min) +min
]
, (ii) blue for values in

I2 =
[
1
4

(max − min) +min,
1
2

(max − min) +min
]
, (iii) red for

values in I3 =
[
1
2

(max − min) +min,
3
4

(max − min) +min
]
, and

(iv) green for values in I4 =
[
3
4

(max − min) +min,max
]
.

Cell cycle model
In [28], cell cycle is modeled describing the interactions
among a set of key proteins which control the G1-to-S
phase transition in mammalian cells, namely RetinoBlas-
toma protein (RB), Cyclin D (CycD), the E2F family of
transcription factors (E2F), and Cyclin E (CycE). The
cell choice between quiescience and proliferation is con-
trolled by a bistable switch characterized by an OFF
state (quiescient cell arrested in G1 phase) and an ON
state (proliferating cell progressing through S, G2 and
M phase). Analyzing this model, the authors character-
ized the role of each protein in maintaining alternation
between the two stable steady states.
Input/output characterization
Parameter values were sampled by means of LHS, start-
ing from values defined in [28] and reported in Addi-
tional File 1 (baseline parameters). n = 1000 parameter
combinations were generated using uniform distribu-
tions, whose minimum and maximum values were

determined using baseline parameter values augmented
with ±25% to sample within neighborhoods of the values
reported in [28]. We explored the parameter space using
uniform distributions to work with spread samples of
parameter values and to infer results that were not
influenced by those reported in [28]. Model solutions
were then calculated for each parameter combination
over the same time interval T = [0, 50] analyzed in [28],
as reported in Figure 3 for CycD and E2F and in Addi-
tional File 2 for CycE and RB. From this preliminary
investigation the bimodal behavior of E2F and CycE
resulted evident, suggesting the presence of interesting
dynamics.
Key parameter identification
A PRCC analysis of input/output data was performed to
identify key model parameters. Serum concentration
resulted to be the most relevant one, since it has the
strongest correlation (close to 1) with all model variables
during the whole time interval (biological experiments on
how serum concentration affects cell cycle are reported
in [28]). Specifically, the PRCC of serum concentration
over time appears remarkably different from the PRCCs
of other outputs, as can be noted in Figures 4 andAddi-
tional File 3 which report the estimated monotonic rela-
tionships between inputs and outputs for CycD, E2F and
CycE, RB respectively. Significance tests of the correla-
tion among serum and model variables confirmed these
results with p-values <0.01.
Key parameter analysis
We further investigated the model focusing on serum
concentration to characterize how its variation influ-
ences model dynamics. Serum concentrations were

Figure 3 Outputs of cell cycle model. Model solutions were calculated for each parameter combination over the time interval T = [0, 50], and
are here reported for CycD (panel A) and E2F (panel B). The bimodal behavior of E2F results evident from these experiments.
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divided into the r = 4 intervals of the same amplitude
reported in Table 2, and a specific color was assigned to
each subinterval (level), as shown in Figure 2, panel C1.
Plots representing model traces were hence colored
using this color-code, as reported in Figure 5 for E2F
and CycD and in Additional File 4 for CycE and RB.
CycD levels increase smoothly with serum concentra-
tions, while the E2F distribution exhibits a bimodal
dependence on serum levels. Indeed, in Figure 5 panel
A, colors are very well clustered, being the traces strati-
fied in accordance with serum concentrations (black-
blue-red-green). In Figure 5, panel B, traces follow the
same stratification order, but clusters are less evident.
Anyhow, the E2F bistable behavior is well explained by
variation in serum concentrations, since the low E2F
state (below 0.5) is mainly characterized by low serum
concentration values (black and blue lines), while the

high state (over 0.5) corresponds to high (serum) con-
centrations (green lines).
To enhance this analysis we focused on scatter plots

of model variables at the final time of our experiments
(i.e. t = 50) versus serum variation, coloring the plot
points in accordance with serum levels. This graphs
showed model configurations at equilibrium, further
emphasizing the model evolutions as well as the role of
serum in cell cycle. Figure 6, panel A, shows the positive
monotonic relationship between serum and CycD.
Instead, in Figure 6, panel B, it is very clear that E2F
distribution exhibits a bimodal dependence on serum
concentrations: the low state (below 0.5) is characterized
by low serum levels (black and blue points), while the
high state (over 0.5) by high serum levels (green points).
Similar results can be found in Additional File 5, where
scatter plots of CycE and RB versus serum values, at t =
50, are reported. Both proteins have a monotonic rela-
tionship with serum concentrations, and the one of
CycE also bimodal.
Despite the use of completely different approaches, the

results obtained from this first case study reproduced
exactly those presented by Tyson et al. in [28]. This
agreement is a preliminary validation of our work-flow
and thus supports the usage of our methodology.

Apoptosis model
From the same paper [28], we selected a second model to
validate our methodology. This second case study con-
cerns apoptosis in mammalian cells and it is modeled by

Figure 4 PRCC analysis of cell cycle model. PRCCs of input/output data revealed serum as the key parameter. Results relative to CycD and
E2F during the whole time interval are reported in panels A and B, respectively. Yellow areas represent the zones of non-significant PRCC values,
while blue lines correspond to serum PRCC values. The strong positive monotonic relationship between serum and model outputs is remarked,
being blue lines close to one in the whole interval and isolated from the other PRCC

Table 2. Color codes

Model parameter I1 (black) I2 (blue) I3 (red) I4 (green)

cell cycle serum [0.01,
1.50]

(1.50,
3.00]

(3.00,
4.49]

(4.49, 5.99]

apoptosis stress [0.01,
0.25]

(0.25,
0.50]

(0.50,
0.75]

(0.75, 0.99]

apoptosis BCL2T [56.00,
68.00]

(68.00,
80.00]

(80.00,
91.99]

(91.99,
103.99]

population Psy [0.00,
0.25]

(0.25,
0.50]

(0.50,
0.75]

(0.75, 1.00]

The variation ranges of key parameters are partitioned into r = 4 equal
subintervals, whose values are reported together with their colors.
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Tyson et al. through a bistable system. The irrevocable
commitment to apotosis reaches a one-way decision
point in which pro-death and pro-survival signals are
processed determining cell fate. In [28], the authors

focused on interactions among proteins BAXm, BCL2,
and BH3, which are responsible of the bistable and irre-
versible switch governing apoptosis. Specifically, the
switch is OFF or ON depending on the balance among

Figure 5 Serum variation influences cell cycle dynamics. A color-code identical to that of Figure 2 panel C1 was defined for serum variation
(see Table 2), and model outputs were then consequently colored. Panels A and B report the colored visualizations of CycD and E2F,
respectively. CycD levels increase with serum concentration: colors are well clustered and stratified in the order expressing a serum increase
(black-blue-red-green). E2F distribution, instead, exhibits a bimodal dependence on serum concentration: low E2F state is mainly characterized by
black and blue lines (low serum concentration), while the high state corresponds to green lines (high serum concentration).

Figure 6 Scatter plots of cell cycle and serum variation. Colored scatter plots of model variables at time t = 50 versus serum variation were
produced, and are here reported for CycD and E2F in panles A and B respectively. This graphs show CycD and E2F configurations at equilibrium,
further emphasizing the role of serum variation. In panel A, CycD levels increase with serum concentration making evident the positive monotonic
relationship between serum and CycD. In panel B, instead, the low E2F state is characterized by black-blue points (low serum), while the high state
by red-green points (high serum), thus revealing that E2F distribution exhibits bimodal dependence on serum concentration.
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BAX, BCL2 (brake) and BH3 (accelerator ): in the OFF
state BAX is inactivated by binding to BCL2, while in the
ON state BAX is active since BCL2 is displaced due to
BH3 accumulation.
Input/output characterization
As in the previous case study, we began our analysis
characterizing model input/output. Specifically, starting
from the parameter values reported in Additional File 6
we created a sample of n = 1000 parameter combina-
tions performing LHS with uniform distributions. In
accordance with [28], stress values were sampled within
the interval 0[1], while the range of other distributions
were fixed using baseline parameter values augmented
with ±30% to work with spread samples of parameter
such that our results were not influenced by those
reported in [28]. As before, LHS settings were fixed to
homogeneously sample parameter values within neigh-
borhoods of the baseline parameter values defined in
[28]. Then, 1000 model solutions were computed - i.e.
one for each parameter combination - and this made
evident the switching-like behavior of the system. In
particular, considering the time interval T = [0, 500]
reported in [28], it resulted that BAXmT and BH3 can
stabilize on two (stable) concentrations: low/high values.
Additional File 7 reports the temporal behaviors of all
the involved proteins over time, while Additional File 8
shows the same behaviors coloured for both stress and
BCL2T. BAXmT and BH3 concentrations at equilibrium
(t = 500) are showed in Figure 7 as scatter plots.
Key parameter identification & analysis
Contrary to the cell cycle model where we found only
one relevant parameter, PRCC analysis on apoptosis
model revealed two putative key parameters, namely
stress and BCL2T (total BCL2 concentration). As
reported in Additional File 9, they both have high PRCC
values (|1| and |0.8|, respectively) in the whole time
interval [0, 500]. Significance tests resulted in p-values
<0.01, so that we expected them both to be related with
the bistable apoptosis switch. We defined a color-range
made of r = 4 variations for both stress and BCL2T (see
Table 2 for values), and model traces were then colored
and analyzed twice (i.e. one for each parameter). Specifi-
cally, as shown in Additional File 8, traces became clus-
tered by colors and color sequences followed orders
describing the increase/decrease of the two parameters.
By means of this approach we were able to qualitatively
detect the monotonic relationships between stress and
BH3, stress and BCL2, BCL2T and BH3. We also
pointed out how model bistability depends on variations
in parameter values, being high/low states of BAXmT
and BH3 characterized by specific parameter concentra-
tions (i.e. colors). To further characterize these depen-
dencies it was necessary to cross-analyze the correlations
among variables (BAXmT, BH3) and parameters (stress,

BCL2T), since they were not sufficient to explain model
bistability when considered separately. In detail, we ana-
lyzed scatter plots of variables versus stress variations at
the end time of our numerical experiments (i.e. t = 500),
and we colored the resulting plots twice: one applying
stress color-code, the other one focusing on BCL2T var-
iations. As shown by Figure 7 (panels A and B), BAXmT
can be found in two concentrations (high and low),
depending on the amount of both stress and BCL2T.
Indeed, when cells are in extremely high or low stress
conditions, BAXmT concentration is mainly in one con-
figuration; see the points in the areas at the left or right
margins of the plots which are mainly concentrated
below or over 60. Specifically, as reported in Figure 7,
panel A, very low stress values induce low concentrations
of BAXmT (black points below 60), while highly stressed
cells have high BAXmT concentrations (green points
above 60). Instead, for intermediate values of stress (blue
and red points), BAXmT has two stable steady states: a
low and a high one (below and over 60, respectively). As
shown in Figure 7, panel B, these configurations are
mainly characterized by the concentration of BCL2T.
When BCL2T is high, BAXmT is in the low configura-
tion no matter how much stress is affecting the system,
as resulted from the the green points below 60 in panel B.
Similarly, BH3 may evolve into two states: (i) a zero

one in which the protein is almost absent, and (ii) a
positive one, in which the protein concentration
increases as stress does (see Figure 7, panels C and D).
Let us note that, while the positive state is sensitive to
stress variation, the zero one is independent of the same
fluctuation. Indeed, as it is evident from Figure 7 panel
C, BH3 may end in the zero-configuration for each
stress concentration. In fact, what really defines this
zero-state is the high concentration of BCL2T, as evi-
dent from the green points in Figure 7, panel D.
Summarizing, following our methodology we were

able to detect bistabilities in the apoptosis model and to
characterize different model evolutions in terms of para-
meter changes, reaching conclusions similar to those
discussed in [28].

Application to our case study
The aim of the previous part of the study was to test
(validate) the proposed methodology on well-known
case studies. Having gained confidence in the approach,
we applied the method to our population model (1) to
explore the phenotypic characteristics inherent to CSCs
on tumor growth. Indeed, system (1) is governed by a
number of cellular behaviors which are difficult to mea-
sure with biological experiments due to their high varia-
bility. The proposed approach helps to understand
better how the system functions and which phenotype
parameters mostly influence it.
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Model input/output characterization
Following the indications of the first phase of our meth-
odology, parameter values (model inputs) were gener-
ated with the LHS technique and time-dependent
subpopulation behaviors (model outputs) were evaluated
for each sampled parameter combination.

As described in Materials and Methods, the LHS tech-
nique needs a set of baseline parameter values to start
from. These rates and the initial cell concentrations
were tuned starting from values found in the literature
[18,29,30] and provided by experimental evidences.
Moreover, initial conditions were fixed to reproduce

Figure 7 Stress and BCL2T concentrations control cell apoptosis. A color-code identical to that of Figure 2 panel C1 was assigned to both
stress and BCL2T variations; see Table 2 for the subinterval definition. Scatter plots of variables versus stress variations at time t = 500 were then
evaluated, and they are here reported for BAXmT (panels A and B) and BH3 (panels C and D), colored for both color-codes. Specifically, panels A
and C are colored for stress, while panels B and D are colored for BCL2T. Both BAXmT and BH3 can be found in two different configurations,
depending on the concentrations of stress and BCL2T.
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specific subpopulation proportions: TCs were set as the
largest subpopulation - as they represent the main part
of the tumor mass - and CSCs as the smallest one [18].
Parameters were then retrieved by tuning system (1) to
reproduce the growth trend of tumor mass observed in
BALB/c mice after a subcutaneous injection of 105 can-
cer cells [31]. Baseline parameter values and model
initial conditions are reported in Supplementary Materi-
als as Additional File 10.
A sample of n = 1000 parameter combinations was

generated through LHS using uniform distributions,

whose sampling intervals were evaluated starting from
the baseline values reported in Additional File 10 aug-
mented with ±50%. The choice of these variation ranges
was due to the lack of experimental data needed to
unequivocally estimate the parameter values; moreover,
using 1000 combinations of model parameters allowed
us to widely explore model behaviors. Indeed, system
(1) was solved 1000 times via numerical integration on
the time interval T = [0, 200], using in each run a differ-
ent set of parameter values. Figure 8 reports these
numerical experiments and shows how, after a first

Figure 8 Cell subpopulations dynamics. System (1) was solved 1000 times over the interval T = [0, 200] using each sampled parameter
combination. Results are here reported for each cell subpopulation: panel A refers to CSCs, panel B to PCs, panel C to TCs, and panel D to DCs.
It resulted that, after a first oscillatory phase, subpopulations reach equilibrium values. However, the wide variation range of output data could
make less evident some interesting subpopulation behaviors.
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oscillatory phase, the different subpopulations reach
equilibrium values. Notice that output data have a wide
range of variation - in term of the difference between
their maximum and minimum values - which could
hide interesting subpopulation behaviors.
Key parameter identification
Correlations between model inputs and model outputs
were evaluated over the whole time interval [0, 200] to
assess which phenotype parameters mostly influence
subpopulation dynamics in terms of monotonic
relationships.
We found that the overall model dynamics mainly

correlate with a small set of parameters related to
changes in CSC subpopulation. In particular, CSC sym-
metric proliferation probability (Psy ) resulted correlated
with all the output variables, for the entire time interval.
Psy has the highest PRCC values (almost 1) with respect
to each model variable, and with significant p-values

<0.01. Other interesting correlations were also found for
CSC proliferation (ωCSC ) and CSC differentiation (h1)
parameters (almost 0.8 and -0.8, respectively, with sig-
nificant p-values <0.01). Figure 9 summarizes these
results showing the key parameters with colored lines
and highlighting which monotone relationships they
have with model variables.
We proceeded with the study firstly investigating the

role of Psy and, then, exploring those of ωCSC and h1.
Key parameter analysis
We firstly focused our study on Psy , fixing r = 4; see
Table 2 for the partition of Psy values. Model traces
were colored in accordance with their Psy values to
detect how Psy variation affects model dynamics. Output
data were also expressed using a logarithmic scale to
reduce their wide range to a more manageable size, thus
allowing to pinpoint some interesting behaviors that
have been subsequently studied in detail.

Figure 9 PRCC analysis of CSC-based tumor model. PRCC analysis revealed Psy (blue line), ωCSC (green line), and h1 (violet line) as the key
model parameters. They have high and significant PRCC values on the whole time interval and with respect to all model variables, as reported
in panel A for CSCs, panel B for PCs, panel C for TCs, and panel D for DCs. Among these parameters, Psy is the one with the highest PRCCs, and
was hence selected to drive the analysis. Yellow areas represent the zones of non-significant PRCC values.
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We found that Psy is responsible for a switching-like
behavior, which discriminates between tumorigenesis
and unsustainable tumor growth. Specifically, as shown
in Figure 10, Psy values smaller than 0.025 mainly lead
to the death of the CSCs and of all the remaining tumor
cells. On the other hand, when the probability of a sym-
metric division is slightly increased, a dynamic homeos-
tasis starts to appear where cell birth and death are
balanced and tumor size, after a first transitory phase,
remains relatively constant. More precisely, the general
behaviors that we observed are: (i) for low Psy values
(black lines), i.e. Psy ∈ [0, 0.25], tumor mainly does not
grow; (ii) for high Psy values (red and green lines), i.e.

Psy ∈ (0.5, 1], populations grow until a plateau is
reached and then maintained; and (iii) for intermediate
Psy values (blue lines), i.e. Psy ∈ (0.25, 0.5], both scenar-
ios are possible.
A further characterization of different tumor evolution

was provided by the scatter plot analysis, focusing on
system dynamics at the end of the time interval, i.e. at
time t = 200. In particular, Figure 11 shows subpopula-
tion versus Psy values, where the points representing the
outputs are colored in accordance with Psy levels. These
results remark how CSC symmetric proliferation is
responsible for a switching-like behavior in tumor evolu-
tion: black points are mainly associated with the

Figure 10 Psy variation influences cell subpopulation dynamics. A color-code identical to that of Figure 2 panel C1 was defined for Psy
variation (see Table 2), and model outputs were then consequently colored. Panels report the colored visualizations of subpopulations: A-CSCs,
B-PCs, C-TCs, and D-DCs. Results revealed that Psy is responsible for a switching-like behavior, which discriminates between tumorigenesis (red
and green lines) and unsustainable tumor growth (black lines). Output data are expressed using a logarithmic scale to reduce their wide range
to a more manageable size.
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unsustainable tumor growth scenario, while green and
red points correspond to tumorigenesis, suggesting
something akin to a putative phenotypic tumor suppres-
sor function for this parameter. However, when Psy takes
values in (0.25, 0.5] (blue points) the switching is less
clear, suggesting that other parameters might influence
the system behaviors in these cases. Therefore, starting
from the results of the previous PRCC analysis on key
parameters, we investigated also the roles of ωCSC and
h1 in tumor evolution. Specifically, we produced scatter
plots of subpopulations values versus both these para-
meters considered individually, and versus two combina-
tions of them, namely Psy * ωCSC and Psy * ωCSC − h1,
see Figure 12. These combinations were suggested by

equations (1) and by the PRCC analysis that defined
which type of monotonic relationships (positive/nega-
tive) key parameters had with model outputs. The
results of these additional investigations confirmed our
previous hypothesis that, when Psy assumes intermediate
values, other factors - as the rate of cell division and dif-
ferentiation - influence tumor evolution. More precisely,
comparing Figure 11, panel A, with Figure 12, panels A
and B, the central role of Psy is further emphasized
being ωCSC and h1 variations considered individually not
able to characterize the switch. Indeed, for each value of
ωCSC or h1 it is possible to find CSCs in both configura-
tions (low and high), while the two CSC states are well
characterized by Psy values: black-blue points mark the

Figure 11 Scatter plots of subpopulations and Psy variation. Colored scatter plots of subpopulations at time t = 200 versus Psy variation
remark that CSC symmetric proliferation is responsible of the two possible tumor scenarios. Specifically: black points are mainly associated with
the unsustainable tumor growth, while green and red points correspond to tumorigenesis. Moreover, when Psy takes values in (0.25, 0.5], i.e. blue
points, the switching is less clear, suggesting that other parameters might influence the system behavior in these cases.
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low CSC concentrations, red-green points the high ones.
On the other hand, combining these parameters with
Psy it is possible to better characterize the switch when
Psy assumes intermediate values. Indeed, comparing
Figure 12 panels C and D with Figure 11 panel A there
is a restriction of the transition zone between CSC con-
centrations. Notice that the strong influence of Psy is
remarked one more time since red and green points
correspond only to tumor growth, black points mainly
define the unsustainable tumor growth scenario, while
blue points can be found in both cases.

Summarizing, these results suggested a critical CSC
symmetric proliferation value at which tumor stabiliza-
tion occurs. Moreover, we identified an intermediate
region in which other phenotype parameters involved in
CSC variation cause tumor growth and maintenance.
Starting from these results we performed a bifurcation

analysis on system (1) and we found that the system under-
goes a transcritical bifurcation as Psy varies. Figure 13
summarizes these results, showing how different tumor
scenarios are associated with changes in Psy values.
In details, two steady states exist: (i) the trivial one (E0),

Figure 12 Switching characterization. Scatter plots of CSCs at time t = 200 were produced considering also the other key parameters and
two ad hoc combinations of them. Specifically: panel A reports CSCs versus ωCSC , panel B refers to CSCs versus h1, panel C shows CSCs versus
Psy ωCSC , and panel D displays CSCs versus Psy ωCSC − h1. All plots are colored using the Psy color-code previously defined, and they confirm the
central role of this parameter. Indeed, ωCSC and h1 variations considered individually are not able to characterize the switch. On the other hand,
combining these parameters with Psy it is possible to better characterize the switch when Psy assumes intermediate values.
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in which tumor does not grow; and (ii) a positive one (E1),
in which tumor grows and then stabilizes. Varying Psy , E0
and E1 collide and interchanges their stability when the
transcritical bifurcation point is reached. Specifically, study-
ing the Jacobian matrix associated with system (1) it

resulted that E0 is stable for Psy < P∗ =
η1 + δ1

ωCSC
. From a

biological perspective, this threshold can be defined as the
tumor invasion boundary. Indeed, for Psy <P

* the stable
equilibrium is E0, which means that tumor cell do not sur-
vive. In the other case subpopulations can be always main-
tained, leading to tumor growth and stabilization.

Conclusions
In this paper we have proposed a new work-flow that
helps to characterize ODE system behaviors and to
identify those parameters which mostly influence such
behaviors. Our work-flow uses state of the art meth-
odologies for sensitivity analysis, re-adapted to allow an
easy identification, interpretation, and visualization of
key model parameters.
When a limited amount of data is available, proper

numerical estimates of model parameters are difficult to

obtain. Estimated values must therefore be regarded as
preliminary information, and alternative strategies must
be identified to assess the quality of the results produced
by the models. In these cases, our methodology can be
followed to investigate the nature of the relationships
between input parameters and output values. In particu-
lar, when parameters are difficult to be experimentally
measured and may thus be affected by large variations,
our methodology allows to study model behavior as para-
meters are varied with statistical techniques. By varying
experimental settings, such as the distribution used, the
parameter variation ranges, and their partition, our meth-
odology allows to deeply investigate all system behaviors
and to identify which parameters are relevant for explain-
ing interesting output dynamics with a limited computa-
tional effort.
Having identified a restricted number of parameters

which are relevant for the model, analytical approaches
can then be applied within this simplified context. Our
work-flow is a practical and informative tool to approach
the study of complex systems such as the biological mod-
els where metabolic pathways are described or where
detailed kinetics need to be accounted for.

Figure 13 Psy bifurcation plots and CSC dynamics. Bifurcation analysis on model (1) revealed that the system undergoes a transcritical
bifurcation as Psy varies. Two steady states exist: E0 (trivial state) and E1 (positive state). The former one correspond to an unsustainable tumor
growth, while the latter describes tumor growth and stabilization. When Psy reaches the transcritical bifurcation point P*, E0 and E1 collide and
interchange their stability conditions.
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The effectiveness of this methodology has been veri-
fied on two well-known models, whose results published
in the literature have been accurately reproduced using
our approach. After this preliminary validation, our
methodology has been applied to a CSC-tumor model
which extends a previous representation of the same
phenomenon that we have published in [18] and that
aims to figure out which are the phenotypic parameters
that drive cancer growth.
Our CSC-tumor based model describes all phases of

cancer progression and accounts for the negative feed-
back which TC subpopulation has on the proliferation
rates of CSCs and PC1s. With the introduction of this
feedback, we have been able to model cell auto growth
limitation which has been demonstrated not only on
stem cells during organogenesis [32], but also in cancer
cells during tumor growth [33]. Applying our methodol-
ogy to this model we found that the probability of CSC
symmetric proliferation is responsible for a switching-
like behavior. Specifically, Psy discriminates between two
possible scenarios: tumorigenesis and unsustainable
tumor growth. More precisely, if CSC symmetric prolif-
eration probability has low values, then the system falls
in the non-growth scenario. Otherwise, for high Psy

values, the only possibility is the tumor growth, and no
other parameters considered individually are able to
characterize the switch. Notice that the condition identi-
fying the non growth scenario is a relaxed condition
since the choice r = 4 did not allow us to unequivocally
discriminate the threshold among tumorigenesis and
unsustainable tumor growth. However, this initial analy-
sis revealed the existence of such a threshold, that we
had afterwards investigated in depth by means of bifur-
cation analysis. Moreover, we found that there is a tran-
sition zone in which it is necessary to consider together
CSC symmetric proliferation, CSC proliferation rate,
and CSC differentiation rate, in order to precisely char-
acterize the tumor evolution. This supports the notion
that CSC phenotypic plasticity is able to lead to func-
tionally distinct cancer subpopulations that support and
modulate the overall tumor growth and maintenance
[2]. Moreover, our finding has been supported by
experimental evidences suggesting that the deregulation
of asymmetric proliferation contributes to cancer initia-
tion [34,35].
All dynamics considered in our phenomenological

mathematical model are related to interactions among
cell populations and are based on cancer stem cell fate,
including cell proliferation, differentiation and death.
These mechanisms are expressed through the phenoty-
pic parameters of the model, which provides a global
description of the tumor growth. However, a deeper
characterization of this phenomenon might consider
also: (i) the intrinsic noise present in biological data,

and (i) the cellular processes within cancer stem cells
which control cell fate, and which are tagged as hall-
mark of cancers. Examples of these processes are the
unfolded protein response [36] and the autophagy [37],
which are stress response phenomena and which modu-
late tumor microenvironment, leading to metabolic
reprogramming and changes in cancer stem cells fate.
A more detailed investigation could be conducted - as

a future work - integrating in our model both the noise
and those internal cellular mechanisms which control
cancer stem cell fate, such that it might be possible to
better characterize which are the microenvironment sti-
muli that mostly influence symmetric proliferation deci-
sion. Results presented in this paper could hence be
used to facilitate and improve this integration. Indeed,
following the idea presented in our recent paper on
multi-level modeling [38], our population model (1)
could be corroborated by an additional level focusing on
cellular internal dynamics.

Additional material

Additional File 1: CELL CYCLE – Parameter values of cell cycle model
described in [28].

Additional File 2: OUTPUTS OF CELL CYCLE MODEL – Model solutions
were calculated for each parameter combination over the time interval T
= [0, 50], and are here reported for CycE (panel A) and RB (panel B). The
bimodal behavior of CycE results evident from these experiments.

Additional File 3: PRCC ANALYSIS OF CELL CYCLE MODEL – PRCCs of
input/output data revealed serum as the key parameter. Results relative
to CycE and RB during the whole time interval are reported in panels A
and B, respectively. Yellow areas represent the zones of non-significant
PRCC values, while blue lines correspond to serum PRCC values. The
strong positive (negative) monotonic relationship between serum and
CycE (RB) is remarked, being the blue line close to 1 (-1) in the whole
interval and isolated from the other PRCC values; see panel A (panel B).

Additional File 4: SERUM VARIATION INFLUENCES CELL CYCLE
DYNAMICS – A color-code identical to that of Figure 2 panel C1 was
defined for serum variation, and model outputs were then consequently
colored. Panels A and B report the colored visualizations of CycE and RB,
respectively. RB levels decrease as serum increases: colors are well
clustered and stratified in the order expressing a serum decrement
(green-red-blue-black). CycE distribution, instead, exhibits a positive
correlation and a bimodal dependence on serum concentration: low
CycE state is mainly characterized by black and blue lines (low serum
concentration), while the high state corresponds to green lines (high
serum concentration).

Additional File 5: SCATTER PLOTS OF CELL CYCLE AND SERUM
VARIATION – Colored scatter plots of model variables at time t = 50
versus serum variations were produced, and are here reported for CycE
and RB in panles A and B respectively. This graphs show CycE and RB
configurations at equilibrium, further emphasizing the role of serum
variation. In panel A the low CycE state is characterized by black-blue
points (low serum), while the high state by red-green points (high
serum), thus revealing that CycE distribution exhibits bimodal
dependence on serum concentration. In panel B, instead, RB levels
decrease with serum concentration making evident the negative
monotonic relationship between serum and RB.

Additional File 6: APOPTOSIS – Parameter values of apoptosis model
described in [28].

Additional File 7: OUTPUTS OF APOPTOSIS MODEL – Model solutions
were calculated for each parameter combination over the time interval
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T = [0, 500], and are here reported for BAXmT (panel A), BH3 (panel B),
and BCL2 (panel C). The bimodal behavior of BAXmT results evident from
these experiments.

Additional File 8: STRESS AND BCL2T CONCENTRATION INFLUENCE
APOPTOSIS DYNAMICS – A color-code identical to that of Figure 2 panel
C1 was assigned to both stress and BCL2T variations, and model
variables (i.e. BAXmT, BH3, and BCL2T) were then colored in accordance
to these color-codes. Specifically, panels A, B, and C refer to the stress
coloration, while panels D, E, and F refer to the BCL2T one.

Additional File 9: PRCC ANALYSIS OF APOPTOSIS MODEL – PRCCs of
input/output data revealed stress and BCL2T as the key parameters.
Results relative to BAXmT, BH3, and BCL2 during the whole time interval
are reported in panels A, B, and C, respectively. Yellow areas represent
the zones of non-significant PRCC values, while blue lines correspond to
stress PRCC values, and red ones refer to those of BCL2T.

Additional File 10: CELL POPULATIONS – Parameter values of cell
population model (1).
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