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Abstract

Background: In order to develop hypothesis on unknown metabolic pathways, biochemists frequently rely on
literature that uses a free-text format to describe functional groups or substructures. In computational chemistry or
cheminformatics, molecules are typically represented by chemical descriptors, i.e., vectors that summarize
information on its various properties. However, it is difficult to interpret these chemical descriptors since they are
not directly linked to the terminology of functional groups or substructures that the biochemists use.

Methods: In this study, we used KEGG Chemical Function (KCF) format to computationally describe biochemical
substructures in seven attributes that resemble biochemists’ way of dealing with substructures.

Results: We established KCF-S (KCF-and-Substructures) format as an additional structural information of KCF.
Applying KCF-S revealed the specific appearance of substructures from various datasets of molecules that describes
the characteristics of the respective datasets. Structure-based clustering of molecules using KCF-S resulted the
clusters in which molecular weights and structures were less diverse than those obtained by conventional
chemical fingerprints. We further applied KCF-S to find the pairs of molecules that are possibly converted to each
other in enzymatic reactions, and KCF-S clearly improved predictive performance than that presented previously.

Conclusions: KCF-S defines biochemical substructures with keeping interpretability, suggesting the potential to
apply more studies on chemical bioinformatics. KCF and KCF-S can be automatically converted from Molfile format,
enabling to deal with molecules from any data sources.

Background
By analogy with orphan genes in genomic studies [1],
metabolites that are not yet known how they are synthe-
sized or degraded are referred to as “orphan metabolites”
[2]. In contrast to the increasing number of the successful
genome projects, there still remain many orphan metabo-
lites. For example, it is estimated that plants produce
over 200,000 secondary metabolites [3] that are not
directly involved in the primary metabolism and whose

absence is not normally lethal. Kanaya and colleagues
have been collecting 50,897 metabolites, and the chemi-
cal structures and metabolite-species relationships are
publicly available in KNApSAcK database [4]. Some of
them are known to function as toxins defending the
organisms against pathogens, parasites and predators [5].
The physiological roles of many such metabolites are still
unknown; however, some of them are important sources
of drugs and industrial materials.
Many studies have been conducted for the experimen-

tal identification of the biosynthetic pathways for such
orphan metabolites. In many cases when the chemical
structure of the final products are apparent, the struc-
tures of intermediates and the chemical transformations
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(enzyme reactions) are hypothesized by the biochemists’
expert knowledge based on organic chemistry and
biochemistry, and the hypothesis are verified by the
experiments such as liquid chromatography / mass spec-
trometry (LC/MS) and nuclear magnetic resonance
(NMR). In order to develop these hypothesis, biochemists
frequently rely on literature that uses a free-text format
to describe functional groups or substructures. Thus, a
direct link between the names and (sub)structures of
compounds and the functional groups contained within
them is important.
Some computational studies conduct de novo meta-

bolic pathway reconstruction, i.e., automated generation
of hypothetical metabolic pathway [6-15]. Among them,
a group of methods deal with the problem of “enzy-
matic-reaction likeness”, i.e., whether or not a com-
pound-compound pair is possibly converted to each
other by enzymatic reactions [11-15].
However, the (sub)structures of metabolites in these

methods were represented computationally, and it is
sometimes difficult to interpret such substructures
because they are not designed as similar with the substruc-
tures that biochemists usually deal with.
In computational chemistry or cheminformatics, mole-

cules are typically represented by chemical descriptors, i.e.,
vectors that summarize information on its various proper-
ties. One group of such descriptors is called chemical fin-
gerprints, which are bit strings that encode the presence
or absence of substructures and various physicochemical
properties in a molecule into binary variables. Many fin-
gerprints have been designed for the rapid search of mole-
cules, especially for pharmaceutical purposes, from a large
amount of molecules in databases. Representative finger-
prints include MACCS fingerprint and PubChem finger-
print, and they can be calculated by many freewares such
as Chemistry Development Kit [16]. These fingerprints
can be used as an input of various machine learning tasks
that include similarity search, classification and regression.
These fingerprints only represent presence or absence

of substructures, so the numbers of the substructures are
not taken into account. This means that, even if a sub-
strate contains two carboxyl groups and one of them
turned into an amide group, these fingerprints only
detects the generation of the amide group but do not
detect the elimination of a carboxyl group. Moreover,
they can not distinguish many functional groups (such as
aldehyde R-(C=O)-H and carboxylate R-(C=O)-OH),
which are obviously different from the viewpoint of
organic reactions because of the difference in reactivities.
Therefore, discriminating these two types of carbon
when comparing molecules is reasonable. Therefore, a
more suitable data representation would be needed for
improving the prediction accuracy and interpretability
for the de novo metabolic pathway reconstruction.

In this study, we designed KCF-S (KEGG Chemical
Function and Substructures), a new chemical data format
describing the numbers of different levels of functional
groups and substructures that are related to chemical
structure conversion in enzyme reactions. This is an exten-
sion of the KCF (KEGG Chemical Function) format that
we published in 2003 [17]. KCF takes into account physico-
chemical environmental properties of atoms by assigning
well-detailed vertex labels, named as KEGG Atom Types,
which distinguish important functional groups such as car-
boxylate and aldehyde. In KCF-S, substructures are compu-
tationally defined using seven attributes: atom, bond,
triplet, vicinity, ring, skeleton, and inorganic. These defini-
tions are designed so that many of them can be explained
by the words in organic chemistry or biochemistry.
The proposed KCF-S can be used for many applications.

As the first application, we used KCF-S for the structure-
based clustering of molecules in a large scale database. As
the second application, we used KCF-S for the de novo
metabolic pathway reconstruction for in the “reaction-filling
framework”, and showed clearly improved predictive perfor-
mance compared with the previous method. KCF-S has
more potential to apply many other purposes, such as phar-
macogenomic analysis and enzyme informatics.

Data
KEGG and KNApSAcK as chemical structure databases
We obtained chemical structure of molecules in KEGG
[18] and KNApSAcK [4] databases in the Molfile format.
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp/) is a database resource for under-
standing high-level functions and utilities of the biologi-
cal system, which contains a variety of sub-databases
such as KEGG COMPOUND and KEGG DRUG. KEGG
COMPOUND collects small molecules and other chemi-
cal substances (17,012 compounds as of June 2013) that
are relevant to biological systems. Each KEGG COM-
POUND entry is identified by the ID number consisting
of the letter “C” and the five digit numerals (such as
C00047 for L-lysine). KEGG DRUG is a comprehensive
drug information resource for approved drugs in Japan,
USA, and Europe unified based on the chemical struc-
tures and/or the chemical components (9,915 drugs as of
June 2013), and associated with target, metabolizing
enzyme, and other molecular interaction network infor-
mation. Each KEGG DRUG entry is identified by the ID
number consisting of the letter “D” and the five digit
numerals (such as D08163 for meclozine, an H1-receptor
antagonist). KNApSAcK database (http://kanaya.naist.jp/
KNApSAcK/) is a comprehensive species-metabolite
relationship database that contains 50,897 metabolites and
109,976 metabolite-species relationships (as of May 2013).
Each KNApSAcK entry is identified by ID consisting of
the letter “C” and the eight digit numerals (C00036189 for
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pectinolide A, a secondary metabolite taken from plant
Hyptis pectinata).

KEGG Chemical Function (KCF) format
KEGG Chemical Function (KCF) format, one of the che-
mical structure file format, has been defined and pub-
lished in Hattori et al., 2003 [17], where molecules
(chemical compounds) are represented as graphs consist-
ing of atoms as vertices and bonds as edges (Figure 1).
The vertices (atoms) of KCF are labeled by the 68 KEGG
Atom types (Table 1), describing the detailed information
of atomic properties such as functional groups. The the
three-letter labels of the KEGG atoms, such as “C1a”
meaning a methyl carbon, represent the hierarchical clas-
sification of atom environments. In this study, up to the
first, the second, and the third letters of the labels are
referred to as the “atom species”, the “atom classes”, and
the “KEGG atoms”, respectively. Any organic molecule
structure can be converted into KCF, as long as it is
described in the Molfile format.

Reactant pairs and compound pairs
A reactant pair is part of a reaction equation, represent-
ing a set of substrate and product with conserved chemi-
cal moiety [19]. KEGG RPAIR database defines 14,105
reactant pairs as of June 2013. In this study, we used the
reactant pairs with “main” types, representing the main
flow of atoms, as the positive examples of the de novo
metabolic pathway reconstruction.
The possible combinations of compound pairs, other

than the ones defined as reactant pairs, are used as nega-
tive examples. 6,922 compounds were involved in known
reactions, therefore, distinguishing the two distinct direc-
tions, i.e., forward and backward, the number of all the
compound pairs was 47,907,162.

Conventional chemical fingerprints
We used conventional chemical fingerprints in order to
compare the KCF-S descriptors (explained in the Method
section) for the interpretability of characterising molecule
datasets and for the predictive ability of de novo pathway
reconstruction. Chemical fingerprints encode presence or
absence (1 or 0) of chemical substructures in molecules,
resulting in a high dimensional binary vector. We used
the Chemistry Development Kit (CDK) version 1.4.9 [16]
to calculate well-known fingerprints, MACCS fingerprint
and PubChem fingerprint. Their dimensions are 164, and
879, respectively.

Methods
In this section, we present a novel integer vector repre-
sentation of chemical compound named “KCF-S descrip-
tor”, each element of which corresponds to the number
of a substructure included in a chemical compound. We

define such substructures on biochemist’s notion of sub-
structures of a chemical compound. We also make a
brief review of methods for compound clustering and
metabolic pathway reconstruction to show the applicabil-
ity of the KCF-S descriptor in the Results and Discussion
section.

Proposed definition of biochemical substructures in KCF-S
Every biochemical substructure was computationally
represented as a graph object, with non-hydrogen atoms
and bonds described as nodes and edges, respectively, as
an extension of the method in Kotera et al [2]. They
were computationally defined using seven attributes:
ATOM, BOND, TRIPLET, VICINITY, RING, SKELE-
TON, and INORGANIC. In this study, each substruc-
ture was given a label (string of characters) using KEGG
Atom Types so that the substructures can be distin-
guished to each other and be interpreted by the words
in organic chemistry or biochemistry.
Figure 2 shows example substructures obtained from

NADH. In this figure, the graph objects in gray areas
represents examples of substructures defined in this
study. For example, around the center of Figure 2, there
is a substructure labeled as “C1b(O2b)-C1y(O2x)-C1y
(O1a)-C1y(O1a)-C1y(N1y+O2x)”, which is one of the
SKELETON entries extracted from a molecule NADH.
This SKELETON entry represents a ribose residue in
this molecule. In other words, a ribose residue is an
instance of a substructure “C1b(O2b)-C1y(O2x)-C1y
(O1a)-C1y(O1a)-C1y(N1y+O2x)”, which is a subclass of
SKELETON. These “instance_of” and “subclass_of” rela-
tionships are described by gray and black arrows in
Figure 2, respectively. Note that an atom (or a node)
can belong to more than one substructure entries. For
example, one of the furanose forms of ribose residues in
NADH contains a furan ring (five-membered ring con-
sisting of four carbon and one oxygen atoms) that is a
subclass of RING. Similarly, sugar residues (e.g., ribose
residue) contain many secondary hydroxyl groups that
are represented as a subclass of BOND. In other words,
a furanose form of ribose residue has a furan ring, and a
sugar residue has secondary hydroxyl groups. This
“has_part” relationships are described by dotted arrows
in Figure 2. The definitions of the seven attributes of
substructures are explained below.
The ATOM attribute in KCF-S
An ATOM entry represents KEGG Atom Type (Table 1).
In Figure 2, circles represent ATOM entries, correspond-
ing to the nodes that form molecular graphs. For exam-
ple, “C1y” in Figure 2 is one of such nodes. According to
the definition of the KEGG Atom Types, the ATOM
entries were classified hierarchically (described by black
solid arrows). A KEGG Atom Type (e.g., “C1y”) is a sub-
class of the atom classes represented by the first two
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letters (termed as KEGG Atom Classes, e.g., “C1”). A
KEGG Atom Class (e.g., “C1”) is a subclass of the element
(e.g. carbon atom), which is a subclass of ATOM entries.
In KCF-S, the variable k represents the level of the
ATOM attributes: k1, k2 and k3 mean the atom species
(or elements), atom classes and atom types, respectively.

The BOND attribute in KCF-S
A BOND entry is defined as a pair of ATOM entries that
form a chemical bond in a molecule, corresponding to
many named bonds in organic chemistry and biochemistry
(e.g., C5a-S2a for carboxylic thioester bond). In Figure 2,
the substructure labeled as “C1y-O1a” is shown as an

Figure 1 KEGG Chemical Function (KCF) format. (a) KEGG Chemical Function (KCF) format of NADPH. KCF format has three sections; ENTRY,
ATOM and BOND. ENTRY section describes the KEGG ID and the type of the entry. ATOM section describes the numbering of the atoms, KEGG
Atom Types for the labels on the atoms, atomic species (C for carbon, N for nitrogen, etc), and 2D coordinates of the atoms. BOND section
describes the numbering of the bonds, the numbering of the two atoms in the bond, and the bond order, and steric configuration of the bond.
(b) KCF representation of NADPH. Molecules are represented as graph structures, where nodes represent atoms labeled with KEGG Atom Types.
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example of a BOND entry, which represents a secondary
hydroxyl group on a cyclic structure. In the string that
identifies a BOND entry, two ATOM entries were sorted
in the alphabetical order, and were connected with a
hyphen. This BOND entry was classified according to the
hierarchy defined for the ATOM entries; i.e., “C1y-O1a”
bond is a subclass of “C1-O1” bond, “C1-O1” bond is a
subclass of “C-O” bond, and “C-O” bond is a subclass of a
BOND (described by black arrows). Also, a BOND entry
has two ATOM entries, and a BOND is part of many
other entries (as described by dotted arrows).
The TRIPLET attribute in KCF-S
A TRIPLET entry is defined as a pair of BOND entries that
share a central ATOM, which consistis of three ATOMs
that are connected sequentially. For example, the triplet
“C6a-C1c-N1a”, “C6a-C1c-O1a” and “C6a-C5a-O5a” repre-
sent the common substructures in alpha-amino acids,

Table 1 KEGG Atom Types.

Carbon atoms

C1a R-CH3 / methyl

C1b R-CH2-R / methylene

C1c R-CH(-R)-R / tertiary carbon

C1d R-C(-R)2-R / quaternary carbon

C1x ring-CH2-ring / methylene in ring

C1y ring-CH(-R)-ring / tertiary carbon in ring

C1z ring-C(-R)2-ring / quaternary carbon in ring

C2a R=CH2 / alkenyl terminus carbon

C2b R=CH-R / alkenyl secondary carbon

C2c R=C(-R)2 / alkenyl tertiary carbon

C2x ring-CH=ring / alkenyl secondary carbon in ring

C2y ring-C(-R)=ring or ring-C(=R)-ring / alkenyl tertiary carbon in ring

C3a R#CH / alkynyl terminus carbon

C3b R#C-R / alkynyl secondary carbon

C4a R-CH=O / aldehyde carbon

C5a R-C(=O)-R / keto carbon

C5x ring-C(=O)-ring / keto carbon in ring

C6a R-C(=O)-OH / carboxylate carbon

C7a R-C(=O)-O-R / carboxylate ester carbon

C7x ring-C(=O)-O-ring / lactone carbon

C8x ring-CH=ring / aromatic secondary carbon

C8y ring-C(-R)=ring / aromatic tertiary carbon

C0 Undefined carbon

Nitrogen atoms

N1a R-NH2 / primary amine

N1b R-NH-R / secondary amine

N1c R-N(-R)2 / tertiary amine

N1d R-N(-R)3+ / quaternary ammonium

N1x ring-NH-ring / secondary amine in ring

N1y ring-N(-R)-ring / tertiary amine in ring

N2a R=N-H / primary imine

N2b R=N-R / secondary imine

N2x ring-N=ring / secondary imine in ring

N2y ring-N(-R)+=ring / iminium

N3a R#N / nitrile

N4x ring-NH-ring / aromatic secondary amine

N4y ring-N(-R)-ring / aromatic tertiary amine

N5x ring-N=ring / aromatic secondary imine

N5y ring-N(-R)+=ring / aromatic tertiary imine

N0 Undefined nitrogen

Oxygen atoms

O1a R-OH / hydroxy

O1b N-OH / N-hydroxy

O1c P-OH / P-hydroxy

O1d S-OH / S-hydroxy

O2a R-O-R / hydroxy ether

O2b P-O-R / hydroxy phosphate bond

O2c P-O-P / pyrophosphate bond

O2x ring-O-ring / cyclic ether

Table 1 KEGG Atom Types. (Continued)

O3a N=O / N-oxo

O3b P=O / P-oxo

O3c S=O / S-oxo

O4a R-CH=O / aldehyde oxygen

O5a R-C(=O)-R / keto oxygen

O5x ring-C(=O)-ring / keto oxygen in ring

O6a R-C(=O)-OH / carboxylate oxygen

O7a R-C(=O)-O-R / carboxylate ester oxygen

O7x ring-C(=O)-O-ring / lactone oxygen

O0 Undefined oxygen

Sulfur atoms

S1a R-SH / mercapto

S2a R-S-R / sulfide

S2x ring-S-ring / sulfide in ring

S3a R-S-S-R / disulfide

S3x ring-S-S-ring / disulfide in ring

S4a R-SO3 / sulfate

S0 Undefined sulfur

Phosphorus atoms

P1a P-R / phosphine

P1b P-O / phosphate

Halogen atoms

X F / fluoride

Cl / chloride

Br / bromide

I / iodide

Other atoms

Z Other atoms

KEGG Atom Types were defined in 2003 [17], and were used to label the
nodes in molecular graphs. KEGG atom label consists of three letters, such as
“C1a” meaning a methyl carbon. The first and second letters represent atom
species and orbital environments, respectively. The third letter describes the
surroundings of a given atom in terms of its bonded neighbors.
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alpha-hydroxy acids and alpha-oxo acids, respectively. In
the string that identifies a TRIPLET entry, the BOND
entries were sorted in the alphabetical order of the ATOM
entries, three ATOM entries were connected with hyphens
so that the central ATOM was placed in the middile. In
Figure 2, the triplet “C1y-C1y-O1a” is shown as an example
of TRIPLET entries, which represents a larger substructure
that contains a secondary hydroxyl group on a cyclic struc-
ture. Similary with the BOND entries, the TRIPLET entries
were classified according to the hierarchy defined for the
ATOM entries. A TRIPLET entry has two BOND entries
and three ATOM entries, and TRIPLET is part of many
other entries.
The VICINITY attribute in KCF-S
A VICINITY entry is defined as a central atom and the
atoms attached to it. Many functional groups correspond
to VICINITY entries, e.g., carbamate “C7a(O6a+O7a
+N1b)”, N-acetyl “C5a(C1a+N1b+O5a)”, and phosphate
“P1b(O1c+O1c+O1c+O2b)”. In Figure 2, the vicinity
“C1y(C1y+C1y+O1a)” is shown as an example, which
represents an even larger substructure that contains a
secondary hydroxyl group on a cyclic structure. In the
string that identifies a VICINITY entry, the central
ATOM was placed in the head, and the attaching ATOM
entries were sorted in the alphabetical order, connected
with plus signs, and placed in parentheses. A VICINITY

entry consists of at least three BOND entries and at least
four ATOM entries.
The RING attribute in KCF-S
A RING entry is defined as a cyclic substructure, containing
3-, 4-, 5- and 6-membered, or larger (up to 12-membered),
rings. The strings to identify RING entries were generated
in the following way: (i) an atom in the ring was selected as
a starter to retrieve ring structures using depth-first search
algorithm, (ii) KEGG Atom Types consisting of the ring
were connected by hyphens to generate a backbone string,
(iii) if there were branch atoms attached to the ring, they
were added to the backbone string using parentheses, (iv)
the processes (i)-(iii) were repeated for all starting atoms,
clockwise and anti-clockwise directions, (v) the obtained
strings were sorted in alphabetical order, and (vi) the first
string was selected to represent the RING entry.
Some common examples are the phenyl ring “C8x-

C8x-C8x-C8x-C8x-C8y(C1b)”, imidazole ring “C8x-C8y
(C1b)-N5x-C8x-N4x” and pyrrole ring “C8x-C8x-C8y
(C1b)-C8x-N4x”. Pyranose sugar ring was represented as
“C1y(C1b)-C1y(O1a)-C1y(O1a)-C1y(O1a)-C1y(O2a)-
O2x”.
RING also deals with condensed rings. For example,

adenine in NADH was represented as a 9-membered
condensed ring “C8x-N4y(C1y)-C8y-N5x-C8x-N5x-C8y
(N1a)-C8y-N5x”, consisting of a 5-membered ring

Figure 2 Examples of proposed KCF-Substructures and their relationships. Three types of arrows are used for explaining the relationships
between objects. See the text for the detail.
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“C8x-N4y(C1y)-C8y-C8y-N5x” and a 6-membered ring
“C8x-N5x-C8y(N1a)-C8y-C8y-N5x”.
The SKELETON attribute in KCF-S
A SKELETON entry is defined as a carbon skeleton/
backbone, such as alkyl and aryl groups. The strings to
identify SKELETON entries were generated in the follow-
ing way: (i) a carbon atom in the terminus of the carbon
skeleton was selected as a starter to retrieve all carbon
chains in the skeleton, (ii) KEGG Atom Types consisting
of the chains were connected by hyphens, (iii) if other
elements (N, O, S, etc) attach to the chain, they were
added to the chain using parentheses, (iv) the longest
chain was selected as a seed, and the shorter chains were
bundled to generate the string representing the carbon
skeleton, (v) the processes (i)-(iv) were repeated for all
starting atoms, (vi) the obtained strings were sorted in
alphabetical order, and
(vii) the first string was selected to represent the SKE-

LETON entry.
Some common examples are the N-acetyl group “C1a-

C5a(O5a+N1b)”, O-acetyl group “C1a-C7a(O6a+O7a)”,
and hexopyranose sugar ring O-glycoside “C1b(O1a)-C1y
(O2x)-C1y(O1a)-C1y(O1a)-C1y(O1a)-C1y(O2a+O2x)”.
The INORGANIC attribute in KCF-S
An INORGANIC entry is defined as a connected atom
groups that consists of elements that are not carbon
atoms. The strings to identify INORGANIC entries were
generated in the following way: (i) an atom in the terminus
of the inorganic component was selected as a starter to
retrieve all chains in the inorganic component, (ii) KEGG
Atom Types consisting of the chains were connected by
hyphens, (iii) if carbon atoms attach to the chain, they
were added to the chain using parentheses, (iv) the longest
chain was selected as a seed, and the shorter chains were
bundled to generate the string representing the inorganic
component, (v) the processes (i)-(iv) were repeated for all
starting atoms, (vi) the obtained strings were sorted in
alphabetical order, and (vii) the first string was selected to
represent the INORGANIC entry.
Some common examples are primary alcohol phosphate

ester “O1c-P1b(O2b(C1b))(O1c)-O1c”, and sulfonate
“O1d-S4a(C1b)(O1d)-O1d”.

Compound clustering based on the KCF-S descriptors
We perform a hierarchical agglomerative clustering of
compounds described by the KCF-S descriptors using a
variant of quasi-clique-based clustering (QCC), which was
originally developed for clustering of large amount of
genes to detect orthologs in KEGG OC [20].
In the original QCC algorithm, each object is repre-

sented by a neighbor profile in which each element corre-
sponds to a similarity score with the other objects, and the
object-object similarity is evaluated by the inner product

of the neighbor profiles. The key parameter of the QCC
algorithm is the clique ratio that decides whether or not
two clusters should be connected. For example, when the
clique ratio is set to 1.0, two clusters should be connected
if the similarity scores of all object pairs in the clusters are
above the similarity threshold. In this case, this QCC
method is equivalent to complete-linkage clustering.
When the clique ratio is below 1.0, e.g., 0.7, two clusters
should be connected if 70% of the object pairs in the clus-
ters are above the similarity threshold.
In this study, instead of the inner product of the neigh-

bor profiles in the original QCC, we used the weighted
Jaccard coefficient of the KCF-S descriptors. We also
make a comparison of the clustering result between the
KCF-S descriptors and conventional fingerprints (e.g.,
PubChem/MACCS fingerprints).

Metabolic pathway reconstruction based on the KCF-S
descriptors
Our previous study for the de novo metabolic pathway
reconstruction [15] predicts a series of reactions of each
pair of chemical compounds on a metabolic pathway by
solving the following supervised classification problem.
Given a collection of n(n−1) compound-compound pairs
(Ci , Cj)(i = 1 , . . . , n, j = 1, . . . , n, i ≠ j), we estimate a lin-
ear function f(C, C’) that would predict whether or not a
chemical compound C is converted to another compound
C’ in an enzymatic reaction.
Linear models use feature vectors for predictions. Our

feature vectors are a generalization of the previous ones
[15] from binary vectors to integer vectors. Our KCF-S
descriptor represents compounds C and C’ as D-dimen-
sional integer vectors as F(C) = (c1, c2, . . . , cD)

T and

�
(
C′) =

(
c′1, c′2, . . . , c′D

)T, respectively, where ck,

c′k ∈ Z, k = 1, . . . ,D. Let min(ck, c
′
k) be a function that

returns ck if ck ≤ c′k and otherwise returns c′k, and let max
(ck, c

′
k) be a function that returns ck if ck ≤ c′k and other-

wise returns c′k. We define two operations for the descrip-
tors as follows:

(�(C) ∧ �(C′)) = (min(c1, c′1), min(c2, c′2), . . . ,min(cn, c′n))

and

(�(C) � �(C′)) = (max(c1 − c′1, 0), max(c2 − c′, 02), . . . ,max(cn − c′n, 0)).

The both operations are generalizations of the pre-
viously defined operations [15] from binary vectors to
integer vectors. (F(C) ∧ F(C’)) captures common KCF-S
features between F(C) and F(C’), while (�(C) � �

(
C′))

captures KCF-S features present in F(C) and absent in F
(C’). (F(C) ∧ F(C’)) and (�(C) � �

(
C′)) are referred to

as common features and differential features, respec-
tively. Using the above operations, we represent any
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compound-compound pair by two types of feature vec-
tors as follows:

�(C,C′) = (�(C) ∧ �(C′),�(C) � �(C′),�(C′) � �(C))T

and

�(C,C′) = (�(C) � �(C′),�(C′) � �(C))T .

The both feature vectors are also generalizations of the
previously defined feature vectors [15]. F(C, C’) and
�(C,C′) are referred to as “diff-common feature vector”
and “diff-only feature vector”, respectively. Note that the
diff-common and diff-only feature vectors share the differ-
ential features, but the diff-common feature vector addi-
tionally has the common features. Thus, the both feature
vectors are designed to capture substructure changes
around the reaction center in the conversion of a chemical
compound to another compound. In addition, the diff-
common feature vector is designed to capture core sub-
structures kept in the conversion of a chemical compound
to another compound.
Using the feature vectors F(C, C’) and �(C,C′) for

compounds C and C’, a linear model estimates a linear
function f(C, C’) = wTF(C, C’), where w is a real value
vector (weight vector). The reaction between C and C’ is
predicted by thresholding the value of f(C, C’). The
weight vector w is estimated such that it can predict
enzymatic-reaction likeness of compound-compound
pairs. To estimate the weight vector w, we apply linear
support vector machine (SVM) with L1-regularization for
its high interpretability and high prediction accuracies
comparable to SVM with L2-regularization. To solve the
optimization problem in SVM, we use an efficient opti-
mization algorithm named LIBLINEAR [21], which is
available from http://www.csie.ntu.edu.tw/~cjlin/lib-
linear/.

Results and discussion
KCF-S (KEGG Chemical Function and Substructure) format
Figure 3 represents an example of KCF-S format proposed
in this study, where the seven attributes (ATOM, BOND,
TRIPLET, VICINITY, RING, SKELETON and INOR-
GANIC) are listed with the KEGG Atom strings, appear-
ances in the molecule, and the atoms involved in the
substructures.
KCF format of molecules have been provided in KEGG

as a fundamental chemical structure information since
2003 [17]. The aim of developing another format named
KCF-S format is not to replace KCF into KCF-S, but to
provide additional information of larger substructures for
the correspondence with the names in organic chemistry
and biochemistry, and for the application for many ana-
lyses such as structure-based clustering of molecules and
metabolic pathway reconstruction study. Note that both

of KCF and KCF-S formats can be automatically con-
verted from Molfile format. This means that, even
though we only used molecules in KEGG and KNAp-
SAcK databases in this study, KCF and KCF-S can deal
with many other molecules in PubChem [22], ChEBI
[23], DrugBank [24], NCI [25] and other databases.

Appearances of substructures in the KEGG and KNApSAcK
databases
The three databases collect molecules for different pur-
poses, i.e., KEGG COMPOUND for fundamental biolo-
gical systems, KEGG DRUG for pharmaceuticals, and
KNApSAcK for secondary metabolites. Therefore, even
though they share some molecules, their collection of
molecules are different from each other. The appearance
of substructures made it possible to grasp more detailed
characteristics of their databases.
Examples of named substructures
Table 2 shows examples of named substructures and
appearance in KEGG COMPOUND, KEGG DRUG and
KNApSAcK databases. These three databases have been
collecting molecules in different purposes, so the appear-
ance of the substructures is naturally different, which is
clearly shown in this study. For example, BOND entries
include many named bonds such as amide bond “C5a-
N1b” and carboxylate ester bond “C7a-O7a”. About 13%
of molecules (2,192 molecules) in KEGG COMPOUND
have amide bonds labeled as “C5a-N1b”, and the number
of the bond in total was 4,174 (about 1.9 bonds per mole-
cule). About 5% of molecules (2,528 molecules) in KNAp-
SAcK have the same bond, and the number of the bond in
total was 6,784 (about 2.7 bonds per molecule). This
means that, even though KNApSAcK contains about three
times more molecules than KEGG COMPOUND, propor-
tion of molecules containing the bonds in KNApSAcK is
not as high as that of KEGG COMPOUND, but the aver-
age number of the bonds is larger in KNApSAcK.
In contrast, about 14% (2,198) molecules in COM-

POUND have “C7a-O7a” carboxylate ester bond, whereas
about 26% (13,166) molecules in KNApSAcK have the
same bond.
In addition to essential amino acids, there are many

other alpha-amino acids. the TRIPLET attribute grasps the
substructure that defines alpha-amino acids “C6a-C1c-
N1a”, which resulted in finding 484 (2.8%) molecules in
COMPOUND, 104 (1.0%) molecules in DRUG, and 183
(0.36%) molecules in KNApSAcK.
VICINITY entries define more detailed substructures.

For example, the atom class “O1” sufficiently describe a
hydroxy group (see Table 1). Among these, the KEGG
Atom “O1a” describe a hydroxy group attached to a car-
bon atom, which is usually referred to as an alcohol
group. It is known that primary alcohol group, secondary
alcohol group and tertiary alcohol group are different in
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terms of the reactivity in organic chemistry, and they are
distinguished by the BOND entries “C1b-O1a”, “C1c-O1a”
and “C1d-O1a”, respectively. Secondary and tertiary alco-
hols can be in a ring structure, cyclic secondary alcohol and
cyclic tertiary alcohol, and in such cases they are repre-
sented as the BOND entries “C1y-O1a” and “C1z-O1a”,
respectively. The VICINITY entry “C1y(C1y+C1y+O1a)”
defines even more detailed subclass of cyclic secondary
alcohol, and sugar residues contain many of these entries.
Similarly, the BOND entry “C8y-O1a” sufficiently describe a
phenolic hydroxy group, and the VICINITY entry “C8y(C8x
+C8x+O1a)” defines the phenolic hydroxy group that does
not have any substituted groups in the ortho (o-) positions.
RING, SKELETON, and INORGANIC entries captured

many substructures that have been defined in literatures in
organic chemistry and biochemistry but have not been
usually captured by the conventional chemical fingerprints.

For example, an RING entry “C8x-N4y(C1y)-C8y-N5x-
C8x-N5x-C8y(N1a)-C8y-N5x” represented an adenine ring
that is attached with a carbon atom in a ring structure
(usually a ribose residue). This adenine ring and the imida-
zole ring “C8x-N4y(C1y)-C8y(N5x)-C8y(C8y)-N5x” are
examples of the RING entries that are frequently found in
COMPOUND but not in DRUG and KNApSAcK data-
bases. In contrast, piperazine ring “C1x-C1x-N1y(C1b)-
C1x-C1x-N1y(C1b)” is an example RING entry that are
frequently found only in DRUG database.
Many sugar rings were found in RING entries, including

a pyranose sugar ring “C1y(C1b)-C1y(O1a)-C1y(O1a)-C1y
(O1a)-C1y(O2a)-O2x”. Sugar residues were also found in
SKELETON entries, such as a ribofuranose “C1b(O2b)-
C1y(O2x)-C1y(O1a)-C1y(O1a)-C1y(N4y+O2x)” that is
attached to an aromatic nitrogenous ring such as nucleic
bases. SKELETON entries captured many named amino

Figure 3 KEGG Chemical Function and Substructures (KCF-S) format, a proposed extension of KCF KCF-S format has two sections, ENTRY
and SUBSTR (substructures). SUBSTR section is divided into the seven subsections, ATOM, BOND, TRIPLET, VICINITY, RING, SKELETON and
INORGANIC. Each subsections contains the substructures with the strings, the number of the substructures appeared in the molecule (shown in
the parentheses), and the atoms involved in the substructures.
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acid residues such as leucine residue” C1a-C1c(C1a)-C1b-
C1c(N1b)-C5a(N1b+O5a)”.
INORGANIC entries contained orthophosphate, pyro-

phosphate, sulfate, sulfite, nitro, etc, and the variations
and the positions of substituted groups were discri-
minated, such as primary alcohol orthophosphate
“O1c-P1b(O2b(C1b))(O1c)-O1c”, cyclic secondary alco-
hol orthophosphate “O1c-P1b(O2b(C1y))(O1c)-O1c”

and cyclic orthophosphate “O1c-P1b(O2b(C1y))(O2b
(C1b))-O1c”.
Statistics of the substructures in KEGG and KNApSAcK
databases
The numbers of KCF Substructures obtained from the
KEGG COMPOUND, KEGG DRUG and KNApSAcK
databases were summerized in Figure 4. From the three
databases, 140,093 substructures were obtained, among

Table 2 Examples of named substructures and appearance in KEGG COMPOUND, KEGG DRUG and KNApSAcK
databases.

KCF-S / annotation COMPOUND DRUG KNApSAcK

#S / #C #S / #C #S / #C

BOND

C5a-N1b / amide bond 4174 / 2192 2678 / 1385 6784 / 2528

C7a-O7a / carboxylate ester bond 3040 / 2198 1787 / 1329 21857 / 13166

C5a-S2a / thioester bond 455 / 453 31 / 30 36 / 36

N2b-N2b / diazo bond 83 / 73 83 / 19 11 / 11

S3a-S3a / disulfide bond 40 / 37 40 / 26 43 / 33

N1b-N1b / hydrazine bond 15 / 13 22 / 15 3 / 3

TRIPLET

C6a-C1c-N1a / alpha-amino acid 512 / 484 113 / 104 191 / 183

C5a-C1b-C5a / beta-keto carbonyl 270 / 106 6 / 6 36 / 36

C6a-C5a-O5a / alpha-keto carboxylate 169 / 168 10 / 8 46 / 46

C6a-C1c-O1a / alpha-hydroxy carboxylate 167 / 154 236 / 137 108 / 87

VICINITY

C1y(C1y+C1y+O1a) / cyclic secondary alcohol 10099 / 3090 1171 / 388 49015 / 11697

C8y(C8x+C8x+O1a) / phenolic hydroxy 1562 / 1263 376 / 313 9978 / 7219

C5a(N1b+N1b+O5a) / pseudourea 66 / 65 82 / 77 46 / 43

N1c(C1b+C1b+C1b) / tertiary amine 54 / 48 302 / 235 0 / 0

C5x(N1x+N1x+O5x) / cyclic pseudourea 36 / 36 30 / 29 20 / 20

RING

C1y(C1b)-C1y(O1a)-C1y(O1a)-C1y(O1a)-C1y(O2a)-O2x / pyranose sugar ring 1024 / 824 64 / 54 7670 / 6187

C8x-N4y(C1y)-C8y(N5x)-C8y(C8y)-N5x / imidazole ring 549 / 535 48 / 47 84 / 84

C8x-N4y(C1y)-C8y-N5x-C8x-N5x-C8y(N1a)-C8y-N5x / adenine ring 428 / 420 17 / 17 55 / 55

C1x-C1x-N1y(C1b)-C1x-C1x-N1y(C1b) / piperazine ring 7 / 7 45 / 45 0 / 0

C8x-C8y(C2b)-C8x-C8y(O1a)-C8y(O1a)-C8y(O1a) / 5-alenylbenzene-1,2,3-triol 3 / 3 0 / 0 12 / 12

SKELETON

C1b(O2b)-C1y(O2x)-C1y(O1a)-C1y(O1a)-C1y(N4y+O2x) / ribofuranose 255 / 255 20 / 20 62 / 62

C1x(N1y)-C1x(N1y) / ethylenediamine in ring 136 / 136 702 / 702 0 / 0

C1a-C1c(C1a)-C1b-C1c(N1b)-C5a(N1b+O5a) / leucine residue 102 / 102 79 / 79 228 / 228

C7a(O6a+O7a)-C8y-C8x-C8x-C8y(O2a)-C8x-C8x / p-hydroxybenzoate residue 0 / 0 3 / 3 51 / 51

INORGANIC

O1c-P1b(O2b(C1y))(O1c)-O1c 520 / 520 19 / 19 66 / 66

/ cyclic secondary alcohol orthophosphate

O1c-P1b(O2b(C1b))(O1c)-O1c 387 / 387 43 / 43 97 / 97

/ primary alcohol orthophosphate

O1c-P1b(O2b(C1y))(O2b(C1b))-O1c / cyclic orthophosphate 173 / 173 2 / 2 2 / 2

O3a-N2b(C8y)-O3a / aryl nitro 304 / 304 164 / 164 48 / 48

N2b(C2c)-O1b / oxime 27 / 27 22 / 22 61 / 61

#S represents the numbers of KCF-Substructures, and #C represent the numbers of compounds containing the KCF-Substructures. Note that the annotations are
not necessary-and-sufficient definitions. For example, “N1b-N1b” bond is a hydrazine bond, but there are some other types of hydrazine bonds; e.g., “N1b-N1c” is
a hydrazine bond with three substituted groups, and “N1x-N1x” is a hydrazine bond in a ring structure.
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which only 8,503 (6.1%) appeared in all of the three data-
bases. Among the 37,987 substructures from KEGG
COMPOUND, 10,070 substructures (27%) were unique
(not found in other databases). Similarly, among the
25,730 and 113,802 substructures from KEGG DRUG and
KNApSAcK databases, 10,932 (42%) and 90,168 (79%)
substructues were unique, respectively (Figure 4a).
Each of the 68 KEGG Atom Types consists of 1-3 char-

acters that hierarchically classify microenvironment of
atoms. For example, carbon atoms “C” are classified into
alkyl carbon atoms “C1”, alkenyl carbon atoms “C2”, etc.,
and alkyl carbon atoms “C1” are further classified into
“C1a”, “C1b”, etc. (see Table 1), which comes up to 98
ATOM entries. All of the three databases use all these
ATOM entries.
From the three databases, 889 BOND entries were

obtained, among which 552 (62%) appeared in all of the
three databases (Figure 4b). Among the 798 BOND entries
from KEGG COMPOUND, 93 substructures (12%) were
unique (not found in other databases). Similarly, among
the 712 and 645 BOND entries from KEGG DRUG and
KNApSAcK databases, 46 (6.5%) and 36 (5.6%) substruc-
tues were unique, respectively.
5769 TRIPLET entries were obtained in total from the

three databases, among which 2578 (45%) were shared
(Figure 4b). Unique TRIPLET entries in KEGG COM-
POUND, KEGG DRUG and KNApSAcK databases were

575 out of 4,470 (13%), 415 out of 3,785 (11%) and 732
out of 4,139 (18%), respectively.
From the 6567 VICINITY entries obtained in total, only

1,652 (25%) were shared in the all three databases (Figure
4c). 593 out of 3,822 (16%) and 547 out of 2,886 (19%)
were unique in KEGG COMPOUND and KEGG DRUG,
respectively, whereas it was found that KNApSAcK data-
base had as many as 2,033 out of 4,905 (41%) unique
VICINITY entries.
The proportion of the shared entries were even fewer in

INORGANIC, RING and SKELETON entries, which were
109 out of 1,113 (9.8%), 2,278 out of 90,848 (2.5%), and
1,236 out of 34,808 (3.6%), respectively (Figure 4c and 4d).
The numbers of unique entries in KEGG COMPOUND
were generally small; 303 (42%) out of 713 INORGANIC
entries, 5,141 (27%) out of 19,354 RING entries, and 3,365
(39%) out of 8,731 SKELETON entries. Those in KEGG
DRUG were larger; 258 (42%) out of 611 INORGANIC
entries, 5,483 (52%) out of 10,446 RING entries, and 4,183
(58%) out of 7,191 SKELETON entries. KNApSAcK gener-
ally had even more entries; 129 (40%) out of 321 INOR-
GANIC entries, 65,539 (84%) out of 78,011 RING entries,
and 21,699 (84%) out of 25,683 SKELETON entries.
Characteristic appearance of substructures in respective
datasets
We further investigated the characteristic appearance of
substructures in respective databases in the following

Figure 4 Venn diagrams for common and uniq KCF Substructures in the KEGG COMPOUND, KEGG DRUG, KNApSAcK databases. The
numbers of (a) KCF-Substructures, (b) BOND and TRIPLET entries, (c) VICINITY and INORGANIC entries, and (d) RING and SKELETON entries are
shown in the top and bottom, respectively.
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way: the numbers of molecules that do or do not contain
the respective substructures are counted in a database
and another, and the significantly appearing substruc-
tures in the database against those in the other were
ranked according to the P-value using Fisher’s exact test.
The top five characteristic substructures in respective
attributes are shown in the Supplementary tables S1-S6
in Additional file 1.
By the comparison of KEGG COMPOUND with

KEGG DRUG, it was shown that KEGG COMPOUND
has significantly more molecules that contain sugar resi-
dues, phosphate groups and adenine residues (Table S1),
which reflects that KEGG COMPOUND collects mole-
cules related with fundamental biological systems such
as nucleic acids and sugar phosphates.
Comparing KEGG DRUG with KEGG COMPOUND,

secondary and tertiary amines, aromatic rings, aryl
halides, piperazine rings, ethylenediamine and ethanola-
mine residues, and sulfur-related inorganic residues were
found to be characteristic in KEGG DRUG (Table S2).
Similarly, comparison of KNApSAcK with KEGG COM-
POUND revealed that carboxylate ester bonds, especially
alkyl carboxylate ester bonds, and O-acetyl group was
found to be characteristic in KNApSAcK (Table S3).
These comparisons reflects the nature of molecules in
the respective databases, i.e., DRUG for pharmaceuticals
and KNApSAcK for secondary metabolites.
The same analysis can be conducted using any datasets

of molecules. In other words, as demonstrated above, the
KCF-S enables us to find characteristic substructures in
any given datasets of molecules in a way that the obtained
substructures are interpretable with the words in biochem-
istry and organic chemistry.

Structure-based clustering of molecules using KCF-S
descriptors
As the first application of KCF-S, we conducted the
structure-based clustering of the molecules in the follow-
ing way; the structures of molecules were represented in
the form of the KCF-S descriptors (integer vectors), the
similarity between the molecules were defined as a
weighted Jaccard coefficient between the two corre-
sponding KCF-S descriptors, and the complete-linkage
clustering or the QCC methods were applied with a vari-
ety of thresholds.
Table 3 shows the comparison of the five complete-

linkage clusters with weighted Jaccard coefficient >= 0.7
using KCF-S and PubChem/MACCS fingerprints. It
appeared that PubChem and MACCS fingerprints tend
to generate larger clusters than those by KCF-S. KCF-S
generated more numbers of smaller clusters, and the
clusters generally consisted of the molecules sharing the
same core structures. It was also observed that the clus-
ters obtained by PubChem and MACCS fingerprints do

not take into account the number of substituted groups,
such that the standard deviation of the molecular weights
were generally larger than the clusters obtained by KCF-
S descriptor. Many clusters obtained by KCF-S descriptor
can be described by the names of compound classes, such
as acyl-CoA and disaccharides. In contrast, many clusters
obtained by PubChem and MACCS fingerprints were so
diverse that we could not find appropriate words to
describe the clusters.
We further conducted the QCC clustering of the mixed

molecules consisting of KEGG COMPOUND and
KNApSAcK, with the weighted Jaccard coefficient >= 0.7
and the clique ratio >= 0.7, and the obtained clusters
were plotted onto a scatter diagram (Figure 5). It was
clearly shown that KEGG COMPOUND and KNApSAcK
contain different distributions of molecular classes. Two
example clusters, glycosylated flavonoids and acyl-CoA
molecules were presented as such examples in Figure 5.
The former cluster consists of 13 and 228 molecules
from KEGG COMPOUND and KNApSAcK, and the lat-
ter cluster consists of 144 and 7 molecules from KEGG
COMPOUND and KNApSAcK, respectively.

Improved performance in the de novo metabolic pathway
reconstruction
As the second application of KCF-S, we tested the pro-
posed descriptors on their abilities to reconstruct meta-
bolic pathways from chemical structures, i.e., to predict
the enzymatic-reaction likeness of given compound-
compound pairs from their chemical fingerprint data,
following our previous work [15].
Cross-validation experiment to predict enzyme-reaction
likeness
We performed the following 5-fold cross-validation. 1)
Compound-compound pairs in the gold standard data
were split into five subsets of roughly equal sizes. Known
reactant pairs were regarded as positive examples, and
the other compound-compound pairs as negative exam-
ples. 2) Each subset were taken as a test set, and the
remaining four subsets as a training set. 3) A predictive
model was trained based only on the training set. 4) The
prediction scores were computed for compound-com-
pound pairs in the test set. 5) Finally, the prediction
accuracy were evaluated over the five folds.
The prediction performance were evaluated by the recei-

ver operating characteristic (ROC) curve, which is a plot of
true positives as a function of false positives based on var-
ious thresholds, and the precision-recall (PR) curve, which
is a plot of precision as a function of recall. The perfor-
mance were summarized by the area under the ROC
curve (AUC) score and the area under the PR curve
(AUPR). The parameters involved in the methods were
optimized with the AUC score and the AUPR score as the
objective functions.
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Table 4 shows the resulting AUC scores and AUPR
scores for five descriptors: KCF-S, PubChem fingerprint,
MACCS fingerprint, and KCF. Among the 4 fingerprints,
the proposed KCF-S descriptor achieved the highest
AUC and AUPR scores. The higher k seems to improve
the prediction accuracy to some extent. The KCF-S
descriptor outperformed the PubChem fingerprint and
the MACCS fingerprint in both AUC and AUPR. This
result suggests that the proposed feature vectors are
useful.

The AUC score of the diff-common feature vector were
slightly higher than those of the diff-only feature vector
in L1SVM, while the AUPR score of the diff-common
feature vector were much higher than those of the diff-
only feature vector in L1SVM. This result implies the
importance to take into account not only substructure
transformation patterns but also common substructures
in the reaction prediction. L1SVM outperformed BASE-
LINE, suggesting that supervised learning with the pro-
posed feature vectors is meaningful.

Table 3 Top five complete-linkage clusters with weighted Jaccard coefficient >= 0.7.

(a) clustered by KCF-S descriptor

Cluster #M Max MW Ave MW Min MW SD

#1 acyl-CoA molecules

144 993.8 C01894 883.8 C04348 767.5 C00010 3.317

#2 enoyl-CoA molecules

79 1124 C16388 1026 C16163 891.7 C05276 6.789

#3 metals and inorganic ions

48 244.0 C19159 97.75 C00150 1.00 C00080 10.11

#4 acyl-CoA molecules with aromatic substituted groups

48 1023 C14118 929.6 C00323 861.6 C00845 6.107

#5 disaccharides

35 342.2 C00897 339.3 C04698 326.2 C19758 1.153

(b) clustered by PubChem fingerprint

Cluster Molecules Max MW Ave MW Min MW SD

#1 from furanocoumarins to glycosylated flavonoids

382 918.8 C12636 372.7 C09956 186.1 C09060 5.993

#2 from biotinyl-5’-AMP to CoA-disulfide

237 1533 C02015 959.5 C16339 573.5 C05921 7.893

#3 from flavonoids to pyrones (chromones), aggregated phenols

159 668.7 C10669 325.1 C09752 166.1 C10712 6.879

#4 from xanthenes to tannins, glycosylated and acylated flavonoids

156 2108 C16302 757.2 C12646 346.2 C09967 27.82

#5 steroids

135 514.2 C15359 335.8 C14621 270.3 C14261 3.703

(c) clustered by MACCS fingerprint

Cluster Molecules Max MW Ave MW Min MW SD

#1 from pyrimidine 5’-deoxynucleotide to CoA-disulfide

432 1533 C02015 823.4 C00100 277.1 C08249 12.13

#2 from 3’,5’-cyclic CMP to polypeptidyl UPD-glucose

195 1221 C04894 564.8 C00842 305.1 C00941 13.41

#3 from xanthenes to highly glycosylated and aromatic acylated flavonoids

167 2108 C16302 642.3 C16290 244.1 C10082 23.76

#4 from xanthenes to C-glycosylated flavonoids

159 610.5 C10102 337.7 C10049 222.2 C00799 5.895

#5 from pyrones to biflavonoids

157 1120 C10235 502.5 C16191 206.1 C09012 13.34

#M indicates the numbers of molecules in the clusters. Max MW, Ave MW, and Min MW indicate the molecules with the maximum molecular weight, the
molecules with the average molecular weight, and the molecules with the minimum molecular weights, respectively, with the respective molecular weights. SD
shows the standard deviation of the obtained clusters. Description after the cluster numbers (#1 - #5) represents the group of molecules, in which “from ... to ...”
indicates that the molecular structures in the cluster were so diverse that we could not find appropriate words to describe the clusters.
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We conducted further analysis to illustrate how much
improvement was achieved by KCF-S compared with KCF.
Two types of integer vectors were constructed; the one
(ATOM descriptor) only contains the ATOM attributes,
the other (BOND descriptor) contains the ATOM and

BOND attributes. Both attributes can be obtained by using
KCF. As the result of the cross-validation experiments, it
was clearly shown that the AUC and AUPR scores by
KCF-S descriptors were better than those by ATOM and
BOND descriptors (Table 4). Obviously, applying KCF-S

Table 4 Cross validation experiments for predicting the enzymatic-reaction likeness.

Chemical descriptors Vector dimension Diff-common L1SVM Diff-only L1SVM Baseline Random

AUC AUPR AUC AUPR AUC AUPR AUC AUPR

KCF-S k3 53679 0.9841 0.2483 0.9827 0.1872 0.8254 0.0584 0.4981 0.0052

10000 0.9839 0.2481 0.9824 0.1840 0.8299 0.0594 0.4985 0.0052

1000 0.9814 0.2269 0.9773 0.1508 0.8397 0.0592 0.5006 0.0053

KCF-S k2 28152 0.9761 0.2144 0.9691 0.1330 0.8122 0.0503 0.4995 0.0053

10000 0.9763 0.2148 0.9698 0.1366 0.8143 0.0501 0.4997 0.0053

1000 0.9720 0.2012 0.9596 0.1029 0.8178 0.0481 0.4988 0.0053

KCF-S k1 11133 0.9702 0.1835 0.9620 0.1300 0.8184 0.0776 0.4962 0.0052

10000 0.9699 0.1835 0.9600 0.1197 0.8187 0.0769 0.4960 0.0052

1000 0.9676 0.1757 0.9475 0.0868 0.8208 0.0744 0.4963 0.0052

PubChem FP 879 0.9531 0.1341 0.9067 0.0571 0.8883 0.0667 0.5006 0.0052

MACCS FP 164 0.9275 0.0932 0.9097 0.0510 0.8200 0.0336 0.5001 0.0052

ATOM k3 99 0.9532 0.1362 0.9378 0.0703 0.8195 0.0492 0.4983 0.0052

BOND k3 973 0.9773 0.2023 0.9713 0.1319 0.8260 0.0546 0.5001 0.0053

Figure 5 Scatter plot of the clusters consisting of KEGG COMPOUND and KNApSAcK by KCF-S descriptors. Each dot represents the QCC
clusters obtained by KCF-S descriptors with the weighted Jaccard coefficient >= 0.7 and the clique ratio >= 0.7. The horizontal and vertical axes
represent the numbers of KEGG COMPOUND and KNApSAcK molecules in the cluster, respectively.
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needs more computational time and memory than KCF.
For example, cross-validation experiment needed about
795 seconds and 57 MB memory when using BOND
descriptor, whereas about 13,031 seconds and 148 MB
memory when using KCF-S descriptor.
Examples of newly predicted pathways using KNApSAcK
We applied KCF-S 3k 1000 descriptor to conduct de
novo metabolic network prediction for all KEGG and
KNApSAcK databases. The predicted compound pairs

were filtered using the weighted Jaccard coefficient >=
0.9, and the connected subnetworks were extracted
from the top 10,000 predicted pairs. We manually
examined each of the predicted compound pairs to esti-
mate whether or not the one of the pair can be possibly
converted to the other in an enzymatic reactions. Taking
the 16th largest subnetwork consisting of 181 com-
pounds (mainly flavonoid glycosides) as an example,
among the 16290 pairs theoretically obtained, 831 pairs

Figure 6 Example of predicted subnetworks. Nodes (with ID numbers of KEGG COMPOUND or KNApSAcK) represent molecules. Black bold
lines indicate the predicted pairs that were considered as positive after manual examination. Black thin lines and gray lines indicate those that
were considered suspicious and negative, respectively. (b) An example pair that was considered as positive, representing a cyclization reaction.
(c) Another example pair considered as positive, representing a methylation reaction. (d) An example pair that was considered as suspicious,
representing a hydroxylation reaction. (e) An example pair that was considered as negative, representing large rearrangement of carbon skeleton
that seems impossible to occur.
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were predicted, and about 100 were considered as posi-
tive as the manual examination.
Figure 6 shows the 63th largest subnetwork consisting

of 45 compounds (mainly prenyl flavonoids), as another
example. Among the 990 theoretically defined pairs,
73 pairs were predicted (Figure 6a), of which 10 pairs
were considered as positive, 11 pairs were considered as
suspicious, and 52 pairs were considered as negative
by manual examination. Among the 10 positive pairs,
9 pairs represented cyclization of prenyl flavonoids
to form pyrano flavonoids (e.g., Figure 6b), and 1 pair
represented methylation (e.g., Figure 6c). Suspicious
pairs include hydroxylation on an aromatic ring (e.g.,
Figure 6d), and negative pairs include isomerations that
seems impossible to occur.

Conclusion
In this study, we introduced a new data structure named
KCF-S describing relatively larger biochemical substruc-
tures than those defined in KCF format we published in
2003. The main aim of KCF-S is a computationally defined
substructures that privides direct links between the names
and the substructures in an interpretable way for bioche-
mists. It was shown that the KCF-S helps extract the sub-
structures that are characteristic in any given dataset of
molecules. We demonstrated the usefulness of KCF-S for
the two applications; structure-based clustering of mole-
cules, and de novo metabolic pathway reconstruction. The
clusters of molecules obtained by KCF-S were less diverse
than those by PubChem and MACCS fingerprints, and
were relatively easy to interpret. The improved predictive
performance was also achieved by KCF-S for the de novo
pathway reconstruction. We belive that the KCF-S can
also be applied for pharmacogenomic analysis and other
studies, taking advantage of the interpretability of the
defined substructures.
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