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Abstract

Background: Dealing with high dimensional markers, such as gene expression data obtained using microarray
chip technology or genomics studies, is a key challenge because the numbers of features greatly exceeds the
number of biological samples. After selecting biologically relevant genes, how to summarize the expression of
selected genes and then further build predicted model is an important issue in medical applications. One intuitive
method of addressing this challenge assigns different weights to different features, subsequently combining this
information into a single score, named the compound covariate. Investigators commonly employ this score to
assess whether an association exists between the compound covariate and clinical outcomes adjusted for baseline
covariates. However, we found that some clinical papers concerned with such analysis report bias p-values based
on flawed compound covariate in their training data set.

Results: We correct this flaw in the analysis and we also propose treating the compound score as a random
covariate, to achieve more appropriate results and significantly improve study power for survival outcomes. With
this proposed method, we thoroughly assess the performance of two commonly used estimated gene weights
through simulation studies. When the sample size is 100, and censoring rates are 50%, 30%, and 10%, power is
increased by 10.6%, 3.5%, and 0.4%, respectively, by treating the compound score as a random covariate rather
than a fixed covariate. Finally, we assess our proposed method using two publicly available microarray data sets.

Conclusion: In this article, we correct this flaw in the analysis and the propose method, treating the compound
score as a random covariate, can achieve more appropriate results and improve study power for survival outcomes.

Introduction
High-dimensional omics data
Personalized medicine is expected to enable a more pre-
dictive discipline, in which therapies are targeted toward
the molecular constitution of individual patients and
their disease; thus, molecular biomarkers are widely
expected to revolutionize the current practice of medi-
cine. For example, the progress of genomics has made it
possible to evaluate molecular signatures to predict can-
cer metastasis [1,2]. Various technological breakthroughs
have led to a plethora of high-dimensional omics data to
support personalized medicine, and these data have a
common characteristic: the numbers of features greatly

exceeds the number of biological samples. Because biolo-
gical phenomena are the result of sets of features (e.g.,
concerted expression of multiple genes), the analysis of a
group of related features (e.g., genes) may be more effec-
tive and may provide more directly interpretable results
than the analysis of individual genes.
As high-dimensional omics research has advanced, the

compound covariate (or compound score) has generally
been held as a simpler and more straightforward
approach. After selecting biologically relevent genes in
training cohort, such a score is often a useful device in
medical applications to define the information contained
in a single set of data and to summarize the association
of a set of variables with disease. Tukey [3] first advo-
cated the use of compound covariates in the clinical trial
setting. To develop a compound score, the individual
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covariates are summed; the association between such a
compound covariate and outcome then is evaluated via
regression analysis. Tomasson [4] used a compound
score for binary outcomes, via fitting a logistic regression.
Later, Hedenfalk [5] successfully applied the compound
covariate method to class prediction analysis for breast
cancer data. Because the use of the compound covariate
is intuitive and seems useful, many other leading
researchers also have applied this method for analyzing
omics data sets [6-9].

Problem statements
A compound covariate is a linear combination of the
basic covariates being studied, with each covariate having
its own coefficient or weight. For survival outcomes, a
commonly used scheme is to 1) compute the univariate
Cox regression [10] for each gene of interest, 2) assign a
weight to each gene (typically, the estimated regression
coefficients or Wald statistics from the univariate Cox
regressions), and 3) combine the weighted genes in a lin-
ear model that incorporates gene expression levels in
each sample. This method of modeling weighted genes is
believed to reflect the importance of each individual gene
to the outcome; the higher the weight assigned, the more
significant a particular gene is.
However, the linear combination of the group of genes,

with each gene having its own estimated weight, should
not be treated as an observed covariate or fixed covariate.
Because selected weights are estimated through computing
the univariate Cox regression of each individual gene, the
compound “covariate” should be treated as a random cov-
ariate that includes estimated error. Besides, for the pur-
pose of assessing whether an association exists between
the compound covariate and survival outcomes, Cox
regression is typically used to evaluate the significance
level of the parameter of the compound score. However,
bias concerns arise when the same data set, training
cohort, is used for a double purpose: to construct the
compound covariate and then to test it. This framework
results in an over-fitting problem. As shown in Figure 1,
we simulate 50 observations with 3, 5, 10, and 30 non-cau-
sal genes used to create a compound covariate. The Cox
regression model is then used to test whether an associa-
tion exists between the compound scores and survival out-
comes in the same dataset. The distribution of p-values
should be uniform in the interval [0, 1]. In our simulation,
however, p-values are concentrated around zero, especially
as the number of genes increases. This demonstrates that
type I error rates are inflated and consequently not con-
trolled. Obviously, double using the training cohort casue
overfitting problem and bias p-values arised. We found
that some medical papers report inappropriate p-values
for testing training cohort data [11,6]. Although the pro-
posed bias p-values in their training cohort do not affact

their final research results inferred from another indepen-
dent testing data set, these observations motive us to
study a more appropriate testing procedure for the com-
pound covariate if the investagtors whish to report a test-
ing result in the training cohort.
In this paper, we first contend the compound covariate

should be treated as a random observation. Our idea is
based on that proposed by Prentice [12], who analyzed
covariates with measurement error and used a partial like-
lihood function technique to infer whether the parameter
for the covariate was significant. In addition, if a training
data set is used for a double purpose (i.e., to construct the
compound covariate and then to test it), the resulting
over-fitting means the p-value is not reliable when testing
the regression parameter. Therefore, we use a 2-fold
method (e.g., [13,14]), splitting all observations in the
training cohort into two parts, one part for assigning gene
weights, and another part for testing the regression para-
meter through a partial likelihood score test. The remain-
der of this paper is organized as follows: We outline
creation of the compound score using a random covariate
approach. Then, we investigate the accuracy of the asymp-
totic distribution of the proposed tests. We thoroughly
assess the performance of two commonly used estimated
weights, “estimated coefficient” and “Wald statistic”, for
the Cox proportional hazards model. Finally, we illustrate
the implementation of the proposed methods through two
real data sets, and offer concluding remarks.

The proposed method
The compound covariate
In this section, we formally define some notations for
compound covariate and introduce a procedure to identify
whether a set of genes is truly associated with survival
times in the training cohort. Let Tj denote the survival
time and Cj denote the censoring time independent of Tj

for the jth patient, with j = 1, 2, ..., n. When some observa-
tions are right-censored, one can observe only random
variables Xj = min(Tj, Cj) and δj = I(Tj ≤ Cj), where I(A) is
an indicator function of event A, assuming the value 1 if
event A occurs and the value 0 otherwise. Let xj = (xj1, xj2,
..., xjp) be the standardized selected gene’s intensity in the
jth patient, where p is the size of the gene set. For creating
the compound covariate, one first fits the univariate Cox
regression model for each individual gene, that is,

h (t|xk) = h0k (t) exp (xkβk) , k = 1, 2, . . . , p (1)

where h0k(t) is a baseline hazard function of each gene
k, and bk is a corresponding parameter to be estimated.

Let β̂1, β̂2, . . . , β̂p be the estimators of b1, b2, ..., bp, and

ŵ1, ŵ2, . . . , ŵp be the Wald statistics obtained from (1).
A compound covariate commonly used by clinicians is
defined as
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zj =
p∑

k=1

xjkβ̂k,

or another possible weighting policy depends on Wald
statistics,

zj =
p∑

k=1

xjkŵksign
(
β̂k

)
,

for each patient j, j = 1, 2, ..., n. From the perspective
of biology, the weighting policy is believed to reflect the

importance of each individual gene to survival outcome,
the higher the weight, the more important the gene is.
In other words, the score can be regarded as a con-
densed index, representing the collective effects of gene
expression.
To identify whether this gene expression pattern is

truly associated with survival in training cohort, investi-
gators prefer to use Cox regression analysis. That is, after
fitting model (1), they construct

h (t | z) = h0 (t) exp (γ0z)

Figure 1 P-value distribution under the null hypothesis with nominal level 0.05.
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where h0(t) is a baseline hazard function and g0 is a cor-
responding parameter for the compound covariate z; they
then use the same data set to test the null hypothesis H0 :
g0 = 0. Under the null hypothesis, however, the method
results in uncontrolled type I error, because the training
data set has been used twice, both for building the model
and for testing the regression parameter. If independent

data are available, carry β̂1, β̂2, . . . , β̂p from training data

set and test on another independent data set is possible,
allowing unbiased model validation to prevent over-fitting.
However, if investagtors whish to report a testing result in
the training cohort, an alternative, though less optimal,
study design is using k-fold method or split the training
cohort data randomly (2-fold), with 50% of the data being
assigned to develop the score, compound covariate, and
50% to evaluate its performance. The limitation of this
approach is that it requires a relatively large sample size.
With this method, Kaplan-Meier survival curves [15] for
the two sets should be examined to ensure no significant
difference by the random selection of those two sets from
training cohort data.

Cox regression with a random compound covariate
The measuring mechanism makes the compound covari-
ate an estimation and not a fixed observable. Naturally,
such a covariate should be treated as a random covariate,
and the variance of each score needs to be taken into
account. To fit a Cox regression model with a random
covariate, we use the idea advocated by Prentice, which
presents the Cox model as a multiplicative hazards
model, with a relative risk at time t,

E
[
exp (γ0z)

]
. (2)

This is a weighted average of a possible relative risk
given the covariate z. The Cox regression model then can
be written as

h (t|z) = h0 (t) E
[
exp (γ0z)

]
.

Because omics data sets involve a large number of fea-
tures, we assume the distributions of the scores follow
normal distribution. That is, for each patient j, assuming
zj is drawn from a normal distribution with mean μj and

variance σ 2
j , (2) can be derived as

exp
(

γ0μj +
1
2

σ 2
j γ 2

0

)
.

Thus, a quadratic term, σ 2
j γ 2

0 /2, is added to the rela-
tive risk function, accounting for the variance in the
random covariate. In addition, with both random covari-
ates z (in this case, the compound covariate) and
observed covariates w with dimension d (in this case,

the clinical variable), it is easy to incorporate the fixed
covariate effects into the Cox model, as:

h (t|z,w) = h0 (t) E
[
exp

(
γ0z + γ T

1w
)]
,

where g0 is the parameter for the compound covariate,
γ 1 is the corresponding parameters for fixed observa-
tions and γ T

1 is the transpose of γ 1.

A partial likelihood function and score test
Suppose now that t1 < ... <tl are the ordered distinct sur-
vival times in the sample, and let R(ti) and F(ti) denote
the risk set prior to ti and the set of subjects failing at ti,
respectively. The partial likelihood function is:

L (γ ) =
l∏

i=1

∏
j∈F(ti) E

[
exp

(
γ0z + γ T

1w
)]

∑
j∈R(ti) E

[
exp

(
γ0z + γ T

1w
)]mi

,

where mi is the number of failures at time ti(i = 1, 2,...l).
Let a = E

[
exp

{
γ0z + γ T

1w
}]
, b = ∂a/∂γ and c = ∂b/∂γ

where γ =
[
γ0, γ T

1

]T (The explicit forms of a, b and c are

shown in Additional file 1). The score statistic then can be
derived as

v =
∂ log L (γ )

∂γ
=

l∑
i=1

⎛
⎝ ∑

j∈F(ti)

bij
aij

− mi

∑
j∈R(ti)bij∑
j∈R(ti)aij

⎞
⎠ (3)

with the observed information matrix V

−∂2 log L (γ )

∂γ 2
=

l∑
i=1

mi

∑
j∈R(ti)cij∑
j∈R(ti)aij

−
l∑

i=1

mi

(∑
j∈R(ti)bij∑
j∈R(ti)aij

)2

−
l∑

i=1

∑
j∈F(ti)

(
cij
aij

−
b2ij
a2ij

)
.

(4)

Consequently, under the null hypothesis H0 : γ = 0,
the partial likelihood score test vTV-1 v will have an
asymptotic χ2

d+1 distribution when V is nonsingular.

In addition, (3) can be used in a standard manner for
γestimation. In practice, we can calculate a p-value by

replacing μj with zj and σ 2
j with Var(zj) where

Var
(
zj
)
=

p∑
k=1

Var
(
xjkβ̂k

)
=

p∑
k=1

x2jks
2
βk
,

is derived based on approximation and s2
βk is the var-

iance estimation of β̂k by using estimated coefficient as
weight or

Var
(
zj
)
=

p∑
k=1

Var
(
xjkŵksign

(
β̂k

))
= 3

p∑
k=1

x2jk
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by using Wald statistics as weight. We show the deri-
vation in more detail in Additional file 2.

Multiple gene sets
Further, we extended the compound covariate to
multiple gene sets. If there are q given independent

gene sets for the jth patient, x(1)

j , x(2)

j , . . . , x(
q)

j
, where

x(s)
j =

(
x(s)
1j , x

(s)
2j , . . . , x(s)

psj

)
, s = 1, 2, ..., q , the compound

covariates can be written as vector

zj =
(
z(1)

j , z(2)

j , . . . , z(s)j
)
=

( p1∑
k=1

x(1)

jk β̂k,
p2∑
k=1

x(2)

jk β̂k, . . . ,
ps∑
k=1

x(s)
jk β̂k

)
, or

zj =

( p1∑
k=1

x(1)

jk ŵksign
(
β̂k

)
,

p2∑
k=1

x(2)

jk ŵksign
(
β̂k

)
, . . . ,

ps∑
k=1

x(s)
jk ŵksign

(
β̂k

))

where ps is the number of genes of the sth gene set.
Then, the partial likelihood function can be written as

L (γ ) =
l∏

i=1

∏
l∈F(ti)E

[
exp

(
γ T
0z + γ T

1w
)]

∑
l∈R(ti)E

[
exp

(
γ T
0z + γ T

1w
)]mi

.

Let a = E
[
exp

(
γ T
0z + γ T

1w
)]
, b = ∂a/∂γ and c = ∂b/∂γ,

where γ =
[
γ T
0, γ

T
1

]T . The score statistic and the observed

information matrix can be further derived as (3) and (4) as
well. Consequently, under the null hypothesis H0 : γ = 0,
the partial likelihood score test vTV-1 v has an asymptotic
χ2
d+q distribution when V is nonsingular. If we reject the

null hypothesis, we can conclude that the covariate vector
is associated with survival time.

Simulation results
To assess the performance of the proposed testing proce-
dure for compound covariate, we conducted simulation
studies under various scenarios to study type I error rate
and power. For the scenario of split training data set as
two parts and the consideration of compound scores as
random covariates, we denoted the compound score using

β̂ as a weight function as SRCB, and the compound score
using the Wald statistic as a weight function as SRCW.
The corresponding notations, SCB and SCW, refer to split
data but without treating the compound covariate as a
random covariate (i.e., typical Cox regression [10]). The
notations DCB and DCW refer to compound scores with
double use of the training data set, both for building the
model and then testing for the same data set. Assume
there are p selected genes in a gene set. Gene expression
data were generated from a multivariate normal distribu-
tion with mean vector b = [b1, b2, ..., bp]T, and variance-
covariance matrix equal to the identity matrix for n cases.
Generated survival times were associated with gene

expression via a proportional hazard model, exp(xTb).
All tests with nominal significance level 0.05 were applied
and empirical rejection probability was obtained based on
2000 simulation runs.
For comparing empirical type I error rates, the value of

b was set to 0. The total sample size was set to 50, 75, or
100. After gene selection process, we assume the total
number of disease relative genes was set to 10, 30, 50, or
70. Censoring times (denoted as cen.) were generated
from an exponential distribution, and the overall censor-
ing fraction in either setup was fixed at 10% or 40%.
Table 1 shows the empirical type I error rates. As shown,
the proposed procedure for SRCB and SRCW preserve
reasonable type I error rates. The methods DCB and
DCW, however, which make double use of the data set,
do not control type I error. Note that we do not show
type I error for SCB and SCW methods, because these
methods are typical Cox regression.
Because type I error rates are preserved for both the

SRCB/SRCW and SCB/SCW methods, we compared the
power under each method in Table 2. In this simulation,
censoring times were also generated from an exponential
distribution, and the overall censoring fraction in either

Table 1 Empirical type I error rates

Method n cen. The total number of genes

10 30 50 70

SRCB 50 10% 0.052 0.057 0.051 0.048

40% 0.041 0.047 0.045 0.046

75 10% 0.052 0.048 0.045 0.046

40% 0.044 0.046 0.050 0.046

100 10% 0.056 0.049 0.052 0.052

40% 0.045 0.044 0.048 0.050

SRCW 50 10% 0.058 0.046 0.052 0.050

40% 0.034 0.046 0.036 0.043

75 10% 0.046 0.042 0.051 0.051

40% 0.044 0.038 0.044 0.040

100 10% 0.051 0.046 0.048 0.060

40% 0.044 0.041 0.046 0.048

DCB 50 10% 0.937 1.000 1.000 1.000

40% 0.910 1.000 1.000 1.000

75 10% 0.944 1.000 1.000 1.000

40% 0.946 1.000 1.000 1.000

100 10% 0.957 1.000 1.000 1.000

40% 0.952 1.000 1.000 1.000

DCW 50 10% 0.926 1.000 1.000 1.000

40% 0.916 1.000 1.000 1.000

75 10% 0.920 1.000 1.000 1.000

40% 0.936 1.000 1.000 1.000

100 10% 0.929 1.000 1.000 1.000

40% 0.933 1.000 1.000 1.000

Empirical type I error rates for comparing SRCB, SRCW DCB and DCW methods.
The value of b was set to 0.

Su et al. BMC Systems Biology 2012, 6(Suppl 3):S11
http://www.biomedcentral.com/1752-0509/6/S3/S11

Page 5 of 11



setup was fixed at 10%, 30%, or 50%. We then simulated
30 total genes in one gene set under two different scenar-
ios. The first scenario considers 30 disease related genes.
We designed two different levels of effect, strong effect
and low effect, as

β = [β1,β2, . . . ,β30]
T = [1, 1, . . . , 1]T,

β = [β1,β2, . . . ,β30]
T = [0.5, 0.5, . . . , 0.5]T,

respectively. The second scenario considers 3 disease
related genes, with the other 27 genes considered “noise”
(i.e., no effect). Strong effect and low effect in this case
were set as

β = [β1,β2, . . . ,β30]
T = [1, 1, 1, 0 . . . , 0]T,

β = [β1,β2, . . . ,β30]
T = [0.5, 0.5, 0.5, . . . , 0]T.

Results are shown in Table 2.
For scenario 1, all 30 genes have effects. As expected, the

power of the tests increases with increase in total sample
size and gene effect, but decreases as the censoring pro-
portion grows. Under the first scenario, the power of
the SRCB method is always better than that of SCB, and
SRCW is always better than SCW. This result indicates that

treating the compound score as a random covariate yields
higher power than treating the score as a fixed covariate.
When the sample size is 100, the power average increases
10.6, 3.5, and 0.4 percentage points for 50%, 30%, and 10%
censoring, respectively. This is a reasonable result, because
the random covariate approach involves fitting a quadratic

Cox regression model, exp
(
γ0μj + σ 2

j γ 2
0 /2

)
, instead of

exp(g0, μj). The quadratic form takes into account the var-
iance of each score, use of the compound score without
acknowledgement of covariate error yields lower power.
To further illustrate the effect of treating the compound

score as a random covariate, in Figure 2, we show the
power curves of the SRCB, SCB, SRCW, and SCW methods
for gene effect varying from -1 to 1. The total sample size
was set to 100, and the censoring fraction was fixed at
50%. As shown in Figure 2, difference in power between
SRCB and SCB and between SRCW and SCW increases as
gene effect size increases, when gene effect size increases,
the quadratic term can more accurately account for var-
iance in the effect. Thus, treating the compound score as a
random covariate in the Cox regression model provides
greater power.
For the first scenario, tests based on SRCB have higher

power than those based on SRCW. In the second scenario,
however, SRCW yields higher power than SRCB. This pat-
tern change seems to relate to the increase in noise in the
gene set. For Figure 3, we fixed the total number of genes
at 30, sample size, 50; censoring fraction, 10% in one gene
set, and show the power curves as gene effect and number
of noise genes increase. There are eight lines in Figure 3.
All solid lines indicate power curves for SRCB while all
long-dash lines indicate power curves for SRCW. Situation
a has 30 disease related genes, b has 10 disease related
genes and 20 noise genes; c has 5 disease related genes
and 25 noise genes, and d has 3 disease related genes and
27 noise genes. As gene effect increases, all powers
increase. As the number of noise genes increases (from
a to d), however, the powers of SRCB and SRCW decrease.
With no noise genes (case a), the power of SRCB is always
greater than that of SRCW. As the number of noise genes
increases, however, the power of SRCW gradually improves
over that of SRCB. This results from the fact that the
compound covariate SRCW takes into account the variance
of β̂ . Similar results were obtained with larger sample size
(75, 100) and censoring fraction (30%, 50%). Consequently,
if prior biological knowledge indicates many noise genes
in a given gene set/pathway, we recommend use of the
compound covariate SRCW over SRCB.
Figure 4 shows the power curve for SRCB with different

sample sizes and different numbers of disease related
genes. In this simulation design, the censoring fraction
was fixed at 30%. The effect of all disease related genes

Table 2 Power comparison under two different scenario

n cen. Scenarios 1 Scenarios 2

SRCB SCB SRCW SCW SRCB SCB SRCW SCW

Strong effect: b = [b1, b2, ..., b30]T = [1, 1, ..., 1]T

50 10% 0.757 0.742 0.675 0.650 0.600 0.599 0.723 0.692

30% 0.624 0.580 0.536 0.490 0.480 0.422 0.546 0.505

50% 0.448 0.350 0.381 0.312 0.350 0.250 0.359 0.294

75 10% 0.960 0.956 0.907 0.902 0.876 0.870 0.944 0.942

30% 0.883 0.864 0.828 0.766 0.783 0.771 0.875 0.822

50% 0.758 0.626 0.690 0.526 0.607 0.494 0.694 0.580

100 10% 0.998 0.997 0.985 0.982 0.974 0.973 0.996 0.995

30% 0.982 0.974 0.948 0.917 0.940 0.905 0.966 0.955

50% 0.928 0.846 0.868 0.730 0.806 0.695 0.883 0.802

Low effect: b = [b1, b2, ..., b30]T = [0.5, 0.5, ..., 0.5]T

50 10% 0.666 0.625 0.594 0.576 0.266 0.242 0.326 0.305

30% 0.498 0.487 0.440 0.430 0.206 0.165 0.224 0.214

50% 0.362 0.285 0.328 0.244 0.144 0.122 0.162 0.124

75 10% 0.930 0.924 0.859 0.850 0.492 0.466 0.574 0.570

30% 0.824 0.756 0.756 0.688 0.370 0.325 0.432 0.421

50% 0.642 0.553 0.571 0.469 0.263 0.206 0.312 0.224

100 10% 0.992 0.990 0.964 0.950 0.662 0.654 0.796 0.792

30% 0.959 0.944 0.918 0.850 0.558 0.505 0.652 0.594

50% 0.852 0.760 0.802 0.654 0.412 0.319 0.472 0.370

We compared the power under each method SRCB/SRCW and SCB/SCW.
The first scenario considers 30 disease related genes. The second scenario
considers 30 disease related genes, with the other 27 genes considered
no effect.
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Figure 2 Power curves with varying gene effect.

Figure 3 Power curves with varying gene effect and number of noise genes (sample size, 50, censoring fraction, 10%).
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was set to 0.5. As expected, the power increases as sam-
ple size grows. Power decreases, however, as the number
of disease genes increase. Under this specified setting, if
we need 80% power and have sample size 100, we can
include about 90 disease related genes in this analysis. If
we have sample size 60, however, we can only include
fewer than 30 disease related genes. This result indicates
the need for greater sample size to preserve power when
a a gene set includes a large number of disease genes.

Examples
In this section, we demonstrate our methodology using
two examples, an Amsterdam 70-gene breast cancer gene
signature [1] and a data set involving two pathways for
non-small-cell lung cancer. All tests with nominal level
0.05 were applied to the training cohort. The R code for
obtaining p-values for the proposed testing procedure is
available from the authors upon request.

Breast cancer data set
The well-known Amsterdam 70-gene breast cancer gene
signature was published by Van’t Veer [1]. To evaluate
the previously established 70-gene prognosis file, Van de
Vijver [16] further classified an additional 295 consecutive
patients with stage I or II breast cancer to validate the
breast cancer gene signature. Because the 295 patients are
independent of the original data, we re-analyzed this data
set using our methodology. In this data set, patients were

followed for a median of 7.2 years, with 79 observed
deaths. The survival curve is shown in Figure 5 (a) and the
testing results, including estimated coefficients (Coef.),
relative risk (RR), and p-values are given in Table 3.
Although all coefficients and relative risks are very close,

the p-values are very different. When using DCB and
DCW, the p-values are 8.6 × 10-13 and 1.1 × 10-13, respec-
tively. When treating the compound covariate as fixed, the
p-values of SCB and SCW are 1.1 × 10-7 and 1.3 × 10-7.
When using our procedure, the p-values of SRCB and
SRCW are 1.9 × 10-8 and 1.8 × 10-8. Although the results
remain significant regardless of method, we achieve appro-
priate p-values for the training cohort, showing that the
70-gene prognosis signature can be used to evaluate early
events in breast cancer patients. We get consistent conclu-
sion with the other researches [17,16].

Non-small cell lung cancer data set
We also tested our method by applying it to a publicly
available non-small-cell microarray data set downloaded
from National Center for Biotechnology Information
Gene Expression Omnibus (GSE14814). There are 90
gene expression profiling conducted on mRNA isolated
from frozen tumor samples. In this example, two well-
known cancer-related pathways were used to test associa-
tion with survival outcomes for demonstration purposes.
The first signaling pathway is the p53 pathway, which is
induced by a number of stress signals, including DNA

Figure 4 Power curves with different numbers of genes and sample sizes.
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damage, oxidative stress, and activated ontogenesis. The
other pathway is the NOD-like receptor signaling path-
way, which has been associated with an increased risk for
the development of different types of cancer [18]. There
are 61 genes in p53 pathway and 54 genes in NOD-like
receptor signaling pathway, respectively. The median
follow-up time of these patients was 5.4 years, and the
number of observed deaths was 29. Figure 5 (b) shows the
survival curve, and the test results are given in Table 4.
To summarize all the information, two compound cov-

ariates were used. As shown, conventional Cox regression
yields overall p-values that are strongly statistically signifi-
cant (2.29 × 10-6 for DCB and 1.85 × 10-5 for DCW). When
treating the compound score as a fixed covariate and
using a split data set, however, the p-values of SCB and
SCW become 0.432 for both. When treating the compound
score as a random covariate, the p-values of SRCB and
SRCW become 0.236 and 0.358, respectively. Such

divergent p-values suggest that an inappropriate method
may well lead to misleading results.

Concluding remarks
In this paper, we focused on survival outcomes and
proposed a feasible and correct method for testing the
compound covariate to evaluate its association with sur-
vival outcomes for training cohort data. We have
described the use of a random covariate, SRCB/SRCW, to
achieve correct testing results for training cohort data
and moderately improve power as compared to the use

Figure 5 Kaplan-Meier curves for two data sets.

Table 3 Breast cancer data set analysis

Method Coef RR p-value

SRCB 0.052 1.12 1.9 × 10-8

SRCW 0.022 1.12 1.8 × 10-8

SCB 0.093 1.10 1.1 × 10-7

SCW 0.040 1.04 1.3 × 10-7

DCB 0.078 1.08 8.6 × 10-13

DCW 0.015 1.02 1.1 × 10-13

To evaluate the established 70 breast cancer gene signature published by
Van’t Veer with ther proposed method.

Table 4 Non-small-cell lung cancer data set analysis

Method Pathway Coef RR p-value Overall p-value

SRCB NOD 0.033 1.0013 0.59 0.236

P53 0.037 1.0044 0.67

SRCW NOD 0.016 1.0063 0.37 0.358

P53 0.001 1.0002 0.99

SCB NOD 0.077 1.08 0.36 0.432

P53 0.015 1.01 0.90

SCW NOD 0.034 1.03 0.24 0.432

P53 -0.01 0.99 0.74

DCB NOD 0.072 1.07 0.37 2.29 × 10-6

P53 0.314 1.37 0.003

DCW NOD 0.019 1.02 0.21 1.85 × 10-5

P53 0.055 1.06 0.006

To evaluate the 90 gene expression profiling from National Center for
Biotechnology Information Gene Expression Omnibus (GSE14814). The first
signaling pathway is the p53 pathway. The other pathway is the NOD-like
receptor signaling pathway.
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of SCB/SCW. Simulation study shows that our proposed
method performs consistently better than SCB/SCW,
because the quadratic term utilized in the SRCB/SRCW

method takes into account error in the compound cov-
ariate. We further found that an increase in sample size
improves power when there is a high proportion of cen-
sored data. If the gene set of interest includes noise
genes, we suggest that the compound covariate SRCW is a
better choice than SRCB; whether noise genes or non-
functionally related genes are hidden in gene set is a
judgment call for a geneticist. In addition, we contend
that a flaw of biomedical papers concerned with such
topics report an bias p-value based on flawed compound
covariate analysis for the same training data set. In this
paper, we use a well-known 2-fold concept, with one part
of the data to built compound covariate and the remain-
der part for testing if there is association between survival
outcomes and the score to ensure correct p-values in the
training data set. Note that we need to check the propor-
tional hazards assumption.
Our method can simultaneously test for more than one

gene set in a training cohort data. More generally, this
procedure can be applied not only for survival outcomes,
but also for binary or continuous outcomes. The weighted
flexible compound covariate method WFCCM [19], an
extension of the compound covariate, also allows for use
of the method of statistical analysis presented here. In
addition, this method can easily be extended to consider
the interaction between random covariates and clinical
observed covariates, as

h (t|z,w) = h0 (t) E
[
exp

(
γ0z + γ T

1w + γ T
2 (zw)

)]
using the same analysis procedure. The chosen weight

β̂ or ŵ can be adjusted by the other clinical observed
covariates in the proposed framework. Our method, how-
ever, cannot be used to test the interaction between two
random covariates, because of the complexity of specifying
the distribution for the interaction between two random
covariates; this is an area worthy of further investigation.
Another one potential practical concern of the proposed
method is that sample size must not be too small, higher
fractions of censored data create the need for further
increased sample size. Similarly, to achieve high power
when studying a large number of genes, greater sample
size is needed. When studying a large number of genes,
ignoring the covariance that exists between genes does not
influence the type I error rate, however, taking the covar-
iance into account may increase power. Further research
is required to address these limitations. Note that the per-
mutation test (e.g., [20]) might be another method to cal-
culate an appropriate p-value for the training dataset,
however, with the permutation test, weights are not easily

adjusted by the other covariates. Even for a small gene set,
this approach may appear too expensive in computer time.

Additional material

Additional file 1: The explicit forms of a, b and c. Additional file 1 is a
PDF file which shows the explicit forms of a, b and c. Then, the score
statistic can be derived.

Additional file 2: The derivation of variance for compound
covariates. Additional file 2 is a PDF file which shows the derivation of
variance for compound covariates.
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