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Abstract
Background: A knowledge-based network, which is constructed by extracting as many
relationships identified by experimental studies as possible and then superimposing them, is one of
the promising approaches to investigate the associations between biological molecules. However,
the molecular relationships change dynamically, depending on the conditions in a living cell, which
suggests implicitly that all of the relationships in the knowledge-based network do not always exist.
Here, we propose a novel method to estimate the consistency of a given network with the
measured data: i) the network is quantified into a log-likelihood from the measured data, based on
the Gaussian network, and ii) the probability of the likelihood corresponding to the measured data,
named the graph consistency probability (GCP), is estimated based on the generalized extreme
value distribution.

Results: The plausibility and the performance of the present procedure are illustrated by various
graphs with simulated data, and with two types of actual gene regulatory networks in Escherichia
coli: the SOS DNA repair system with the corresponding data measured by fluorescence, and a set
of 29 networks with data measured under anaerobic conditions by microarray. In the simulation
study, the procedure for estimating GCP is illustrated by a simple network, and the robustness of
the method is scrutinized in terms of various aspects: dimensions of sampling data, parameters in
the simulation study, magnitudes of data noise, and variations of network structures.

In the actual networks, the former example revealed that our method operates well for an actual
network with a size similar to those of the simulated networks, and the latter example illustrated
that our method can select the activated network candidates consistent with the actual data
measured under specific conditions, among the many network candidates.

Conclusion: The present method shows the possibility of bridging between the static network
from the literature and the corresponding measurements, and thus will shed light on the network
structure variations in terms of the changes in molecular interaction mechanisms that occur in
response to the environment in a living cell.
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Background
The knowledge-based approach to construct biological
network models is recognized as one of the most promis-
ing advances in computational biology [1]. In this
approach, the causal relations between biological mole-
cules are described as a directed graph, based on the inter-
action information extracted from a large number of
previous reports, in a manual or automatic manner [2,3].
Since each relation has been identified by experimental
studies, the existence of edges in the network model is
supported by strong evidence. Due to the high reliability
of each relation, many network models, even those with
large, complex structures, have been constructed for vari-
ous biological phenomena by a knowledge-based
approach [4-6]. Note that a network generated by a
knowledge-based approach is a mixture of molecular rela-
tionships identified by experimental studies under differ-
ent conditions. Indeed, it is well known that the
relationships between the molecules in a living cell
change dynamically, depending on the cellular environ-
ment. Fortunately, an abundance of such information
about molecular interactions under different conditions
has been obtained by measuring them on a genomic scale,
due to recent advances in experimental techniques, and
the information about the interactions is available at var-
ious web sites [7]. Thus, we can evaluate the consistency
of the knowledge-based network structure by the available
information about the data measured under the different
conditions. Although the inference of static network struc-
tures from the data has been intensively studied by vari-
ous approaches, such as the Bayesian network [8], the
dynamic Bayesian network [9], the Boolean network [10],
and the graphical Gaussian model [11], the consistency
evaluation will be useful to trace the dynamic network
structure variations reflecting the molecular relationships
that change coordinately in response to the cellular envi-
ronment.

The consistency evaluation between the network structure
and the measured data is well known in statistics as the
test for causal hypotheses by using the measured data. The
origin of the test for causal hypotheses is attributed to
path analysis [12]. Unfortunately, the importance of this
cornerstone research was not recognized for a long time,
but the natural extension of path analysis has been estab-
lished as the well-known structural equation model
(SEM) [13]. Indeed, the SEM has been utilized recently in
various fields, in accordance with increased computer per-
formance. However, the SEM without any latent variables,
which is a natural assumption for its application to bio-
logical networks, sometimes has difficulties in the numer-
ical calculation of the maximum likelihood for the
observed data. To overcome the problem with this calcu-
lation, the d-sep test [14] has been developed, based on
the concept of d-separation in a directed acyclic graph

(DAG) [15]. Note that the graph consistency with the data
in the d-sep test is considered by focusing on the absence
of edges in the graph [16,17].

Recently, linear regression was applied to reconcile the
gene regulatory network with the corresponding data
[18]. This application is based on the concept that the
entire network of gene regulation can be divided into a
few network motifs, with a two-layer relationship
between the transcription factors and their regulated
genes [19]. Indeed, the division of the entire network into
a small and simple network enables us to utilize the stand-
ard statistical tests in linear regression for the consistency
of the gene relationships with the measured data. Unfor-
tunately, the linear regression is limited to the two-layer
relationships, and subsequently, its application is con-
strained to the simple structures of gene regulatory net-
works.

In this study, we propose a new method for estimating the
consistency of a causal graph with the measured data, in
combination with the Gaussian network (GN) [20] and
the generalized extreme value distribution (GEV) [21].
The present study partly exploits the previous study [18]
about the consistency between the network motif with
two-layer gene relationships and the measured data. How-
ever, instead of the network motifs with simple structures,
here we consider rationally complicated network struc-
tures based on the graphical model, and its consistency
with the data is expressed as a probability, referred to as
the graph consistency probability (GCP). The perform-
ance of the present method is examined by artificial net-
works with various structures and actual data measured in
Escherichia coli. Furthermore, the merits and pitfalls of our
method are discussed in terms of its possible utility with
various actual issues and methodologies, in comparison
with previous methods.

Results and discussion
Calculation of Graph Consistency Probability (GCP)
We will illustrate the procedure for calculating the graph
consistency probability (GCP) with a simple graph, G0,
which is a directed acyclic graph with ten nodes and nine
edges, and with the corresponding data that are artificially
generated on the assumption that the data noise follows
the normal distribution. The procedure for calculating the
GCP is composed of five steps, as schematically shown in
Fig. 1 (see details of the mathematical description in the
Materials and Methods and the additional file 1: Details of
the schematic description of the procedure).

At the first step, the given graph, G0, is recursively factor-
ized into the subgraphs, according to the parent-descent
relationships in DAG [15]. By recursive factorization, G0 is
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rationally divided into 10 subgraphs, based on the parent-
descent relationships in the directed graph.

At the second step, we calculated the log-likelihood of the
given graph, l(G0), with the corresponding data by a Gaus-
sian network model [20]. To calculate l(G0), here, we gen-
erated the data {Xkl} for each node with 50 sample
dimensions, i.e., for k = 1,2,...,10 and l = 1,2,...,50, instead
of the actual data, by the structural equations (see details
in Methods). The l(G0) of the given graph was then calcu-
lated to -31.14. We will estimate the probability of l(G0),
GCP, by the following three steps.

At the third step, we generated the graphs based on the
given graph, and then calculated the log-likelihoods of the
generated graphs according to the two preceding steps.

(1) We generated 50 random graph sets, {Gi}, to form a
data set, in which each graph has the same number of
nodes and edges, but with different connections from
those of G0.

(2) 50 corresponding log-likelihoods of {Gi} were calcu-
lated according to the first and second steps. Among the
50 log-likelihoods, the maximum of the log-likelihood,
l(Gmax), is selected.

(3) The above procedure is iterated 1000 times to finally
obtain 1000 values of l(Gmax). In this step, the dimensions
of the sampling data, the number of graphs in one set, and
that of the iterations to select l(Gmax) are changeable
parameters, and the robustness of our method with them
will be evaluated in the following sections.

Flow of the calculation of graph consistency probabilityFigure 1
Flow of the calculation of graph consistency probability. The calculation is composed of five steps (see details in the 
text).
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At the fourth step, we fit the log-likelihoods calculated in
the third step to the GEV model. The maximization of the
GEV log-likelihood leads to the following estimate:

for which the GEV log-likelihood is 4063.59. Although

the maximum likelihood estimate for  is negative, cor-

responding to a bounded distribution, the ξ value larger
than -0.5 indicates that the maximum likelihood func-
tioned well for the estimation [21,22]. Furthermore, the
goodness of fit can be visually diagnosed, using the three
diagnostic plots for assessing the accuracy of the GEV
model, fitted to the 1000 log-likelihoods data by the three
parameterizations. Neither the probability plot nor the
quantile plot gave any cause to doubt the validity of the
fitted model: each set of plotted points was nearly linear.
The return-level curve asymptotes to a finite level as a con-

sequence of the negative estimate , and also provides a

satisfactory representation of the empirical estimates. In
addition, the corresponding density estimate seems con-
sistent with the histogram of the data. Consequently, the
four diagnostic plots lend support to the fitted GEV
model.

At the final step, we estimated the GCP of the log-likeli-
hood of the given graph based on the fitted GEV distribu-
tion. According to the GEV distribution, the GCP
corresponding to l(G0) (= -31.14) was calculated to be less
than 10-10. As a result, it is natural that the examined given
graph was highly consistent with the data generated
according to the graph structure.

Robustness of the Present Method
The high performance of the present method described in
the preceding subsection depends on a few parameters. By
using the same network structure as in Fig. 1, we tested the
robustness of the present method in terms of the dimen-
sions of the analyzed data, the two parameters in generat-
ing artificial graphs for GEV, and the degree of noise in the
data. Furthermore, the robustness of the network structure
variation is tested by using the typical network structure in
biological interactions in the following four subsections.

Robustness in Terms of the Dimensions of the Analyzed 
Data
We test the robustness of our method in terms of the
number of data samples for one variable (data dimen-
sion) that is smaller than the data dimension ({Xi} for i =
1,2,...,50) in Fig. 1. This is because the experimental con-
ditions are frequently limited, due to the technical diffi-
culty of performing experiments for different growth

conditions. Thus, small data dimensions are expected in
the actual data.

We performed the same estimation of GCP as that in Fig.
1, by using the data with 15 and 30 dimensions, and in
both cases, the present method operated well. The GEV fit

well to the data: the estimated  was larger than -0.5: the

estimated  values are -0.1132 for the 15-dimension data

and -0.1332 for the 30-dimension data. In addition, the
four GEV-diagnostic plots for assessing the accuracy of the
GEV model show the validity of the fitted model in each
case (see additional file 2: Robustness in terms of data
dimensions). By the estimated GEV distributions, the
GCPs in the two cases were less than 10-4 and 10-8, respec-
tively. The probability for the 30-dimension data was
smaller than that for the 15-dimension data. Considering
that the probability was 10-10 in the 50-dimension data in
the preceding section, this indicates that the resolution
degree about the consistency is higher with larger dimen-
sions.

Robustness in Terms of Parameters in Generating the GEV 
Model
The GCP depends on two parameters in the graph gener-
ation for GEV: the number of graphs for selecting the max-
imum of the likelihood in one set of the generated graphs,
l, and the number of iterations for sampling the maxi-
mum values from each set of generated graphs, n. In Fig.
1, l and n were set to 50 and 1000, and a total of 50,000
graphs were generated for GEV. Here, we examined the fit-
ness of the log-likelihoods to GEV based on the graph
shown in Fig. 1, with nine pairs of l and n: l was set to 25,
50 and 100, and n was set to 100, 500, and 1000. The total
numbers of graphs for GEV ranged from 2500 to 100000,
and all of the examinations with the above parameter
pairs are provided in an additional file (see additional file
3: Robustness in terms of the parameters). Here, we
focused on the case when fewer graphs are generated than
the number in the default case. This is because a small
number of generated graphs in each set and iterations may
tend to violate the distribution of GEV, due to some biases
in the graph generation.

In the comparison of (l, n) = (50, 100) and (25, 1000)
with (50, 1000) in Fig. 1, the log-likelihoods calculated in
the two cases were fitted to the GEV model. Indeed, the

two  values were larger than -0.5: the estimated  values

were -0.1545 in (l, n) = (50, 100) and -0.1670 in (l, n) =
(25, 1000), respectively. The two sets of diagnostic plots
for assessing the accuracy also showed the validity of the
fitted model in each case (see additional file 3). A closer

ˆ , ˆ , ˆ ( . , . , . ),μ σ ξ( ) = − −126 58 13 15 0 148

ξ̂

ξ̂

ξ̂

ξ̂

ξ̂ ξ̂
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inspection revealed that the  value in the (50, 100) case

was slightly less than that in the (25, 1000) case. This indi-
cated that the number of graphs in each set, l, is more sen-
sitive to the goodness of fitness than the number of
iterations, n, regardless of the total number of generated
graphs. At any rate, the present method operates well,
even in the case of a relatively small number of generated
graphs.

In general, the optimized values of l and n depend on the
size of the examined graph, and may be expressed as the
fraction to the total number of possible graphs with the
same numbers of nodes and edges as those of the exam-
ined graph. Although the number of possible graphs com-
posed of arbitrary numbers of labeled nodes and edges
can be estimated asymptotically under some constraints
on the edge connectivity [23], unfortunately, the total
number of possible graphs, in which all of the nodes are
connected to form one graph, is not still obtained. In the
present stage, we should heuristically define l and n by
diagnosing the goodness of fit to the GEV model.

Robustness in Terms of the Magnitude of Noise in the 
Analyzed Data
We estimated the GCP in various noise ranges. For this
purpose, the value of the standard deviation in the struc-
tural equations for data generation (σ = 0.1 in Fig. 1) was
changed to three values (σ = 0.5, 1.0, and 2.0). By the
same procedure as that in Fig. 1, we calculated 100 GCPs
for the three ranges of standard deviations. Finally, the
probabilities of the generated graphs were calculated.

The histograms of the GCPs in the three ranges of standard
deviations are shown in Fig. 2. In this figure, 100 GCPs
were plotted against the number of connections in the
generated graphs that were different from those in the
examined graph in the respective cases of standard devia-
tions. In the cases of the two small standard deviations (σ
= 0.5 and 1.0), less than 10-10 of the GCPs emerged most
frequently, but the most frequent GCP was found at 10-4

in the case of the largest standard deviation (σ = 2.0). In
the former two cases, the largest GCP was 10-6 in σ = 0.5
and 10-3 in σ = 1.0. Although some exceptional GCPs were
also found, the present method operates well within the
range of the two noise levels. In contrast, the last case
shows the limitation of our method, in terms of the noise
of the measured data. Careful preprocessing of the meas-
ured data may be required to apply our method to actual
data. Note that the noise is amplified as the number of
parents grows in the present simulation. For example, the
standard deviation is (α1

2 + α2
2 + 1)σ, when a descent has

two parents and αi is the path coefficient between the
descent and the i-th parent. At any rate, the limitation of
the present method in terms of the data noise can be
examined by describing the histogram of the GCP, and
was estimated between 1.0 and 2.0 for the graph in Fig. 1.
In addition, we assumed that the distribution of the data
noise also follows uniform and gamma distributions, and
obtained similar results in terms of the robustness about
the data noise (see additional file 4: Robustness in terms
of the noise according to the gamma and uniform distri-
butions).

Robustness Regarding the Variation of the Network 
Structure
We applied the present method to the three network struc-
tures shown in Fig. 3. The three networks are analogous to
the typical structures of biological networks; the first is
analogous to part of a chain reaction in a metabolic path-
way, the second represents the simple structure of a gene
regulatory network, and the third depicts a cascade in a
signal transduction pathway. According to the connectiv-
ity in the network, the data were generated with the corre-
sponding structural equations, and the present method
was applied to estimate the graph consistency with the
generated data.

The present method operated well in all of the network
structures. Indeed, the log-likelihoods in the three net-
works fit well to the GEV (see statistics in the legend of Fig.
3, and additional file 5: Robustness regarding the network
structure variation). In addition, the GCPs were very
small: The GCPs of the three networks were less than 10-

11, 10-4, and 10-7, respectively. Interestingly, the magni-
tudes of the GCPs may be related to the network struc-
tures. The GCP in Fig. 3B is relatively larger than the GCPs
in Figs. 3A and 3C. This is because the present path coeffi-

ξ̂

Robustness in terms of the noise in measured dataFigure 2
Robustness in terms of the noise in measured data. 
GCP(=P(l(G0))) for the graph in Fig. 1 was calculated with sim-
ulated data with distinct standard deviations, and the fre-
quencies of GCPs are plotted against the probability degree. 
The horizontal axis indicates the log(GCP) value, and the ver-
tical axis is its frequency: black-colored bar, σ = 0.5; gray-
colored bar, σ = 1.0; and boxed bar, σ = 2.0.
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cients between the 10 nodes were set at different values,
but in the same order of digits. This indicates that the
most similar data for respective variables were generated
in Fig. 3B, and caused pseudo-correlations between the
variables with no edges in the network in Fig. 3B.
Although the performance for estimating the graph con-
sistency may slightly decrease, depending on the number
of two -layer relationships in the examined data, this sim-
ulation shows that the present method can be applied to
various structures of networks.

Examinations of Actual Graphs
We examined the performance of the present method
with two sets of actual networks in Escherichia coli and the

corresponding actual measured data. One set is a regula-
tory network for the SOS response system with the expres-
sion degrees of the constituent genes measured by
fluorescence [24], and the other is 29 networks classified
by gene functions, with the expression degrees under
anaerobic conditions measured by microarray [25]. The
former examination is a verification of the present
method for an actual network with a size similar to the
networks shown in Fig. 1, and the latter is a demonstra-
tion of a high-throughput search of network candidates,
consistent with the data measured under particular condi-
tions.

Robustness regarding graph structure variationFigure 3
Robustness regarding graph structure variation. The calculation is composed of five steps (see details in the text). Three 
networks with typical structures in biology are examined in (A), (B), and (C). To generate the simulation data by structural 
equations, we set the standard deviation to 0.1 in all three graphs, and the path coefficients between the variables are as fol-
lows: (A) α1,2 = 0.6, α2,3 = 0.3, α3,4 = 0.1, α4,5 = 0.7, α5,6 = 0.8, α6,7 = 0.9, α7,8 = 0.2, α8,9 = 0.5, and α9,10 = 0.4; (B) α1,2 = 0.1, α1,3 
= 0.2, α1,4 = 0.3, α1,5 = 0.4, α1,6 = 0.5, α1,7 = 0.6, α1,8 = 0.7, α1,9 = 0.8, and α1,10 = 0.9; and (C) α1,2 = 0.5, α1,3 = 0.7, α2,4 = 0.4, α2,5 
= 0.8, α3,6 = 0.6, α3,7 = 0.3, α4,8 = 0.2, α5,9 = 0.1, α6,9 = 1.0, and α7,10 = 0.9. The value of log-likelihood and the parameters of 
GEV distribution in the respective networks are as follows: (A) l(G0) = 163.4805, μ = 89.8375, σ = 12.9694, and ξ = -0.1743; 
(B) l(G0) = 61.6096, μ = 3.0217, σ = 12.5220, and ξ = -0.1314; and (C) l(G0) = 124.8894, μ = 46.9002, σ = 12.1395, and ξ = -
0.1406. See also the corresponding GEV plots at additional file 5: Robustness regarding the network structure variation.

(A)

(B)

(C)
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Verification for a Simple Network
The gene network in the SOS system is schematically
shown in Fig. 4A. The SOS DNA repair system in
Escherichia coli is a well-characterized transcriptional net-
work [26,27]. One of the SOS proteins, RecA, acts as a sen-
sor of DNA damage, and a master repressor (LexA) binds
sites in the promoter regions of these operons. The corre-
sponding data to the constituent molecules in the net-
work are the transcriptional activity of genes measured

with real-time monitoring by means of low-copy reporter
plasmids, in which a promoter controls green fluorescent
protein [24].

The GEV plots with the likelihood values and the statistics

are shown in Fig. 4B. The value of  was larger than -0.5,

and the GEV plots were quite similar to those in Fig. 1.
Indeed, each set of plotted points was nearly linear, and

ξ̂

Evaluation of the transcriptional network of the SOS DNA repair system in Escherichia coliFigure 4
Evaluation of the transcriptional network of the SOS DNA repair system in Escherichia coli. The network is sche-
matically shown in (A), and the corresponding GEV plots and the box-plot are also shown in (B). The value of log-likelihood 
between the examined network and the measured data is -1168.453, and the parameters of GEV distribution are as follows: μ, 
-1179.079, σ, 4.957; ξ, -0.236. The data for the promoter activities of eight genes in the SOS system are cited from [24].

(A)

(B)
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the return-level curve asymptotes to a finite level. In addi-
tion, the corresponding density estimate seems consistent
with the histogram of the data. Consequently, the good-
ness of fitness in the actually measured data lends support
to the GEV model.

The GCP of the SOS network with the corresponding
measured data was estimated as 0.049, and the network
structure was estimated to be consistent with the data
measured from the examined network. However, the GCP
was large in comparison with the GCPs in the simulation
studies in the preceding sections. This is partly because the
cyclic relationship of RecA is neglected in the examined
network, and partly because most of the relationships in
the examined network are composed of 2-layer relation-
ships, due to the production of similar degrees of expres-
sion data, as in the situation in Fig. 3B. At any rate, the
performance of the present method was verified by a well-

known network, with a size similar to that in the simula-
tion, and with the corresponding data measured by an
experimental study.

Demonstration for an Actual Network Set
We further tested the performance of our method for
selecting the networks consistent with the data measured
under specific conditions from many network candidates.
Here, we arranged 29 regulatory networks in Escherichia
coli and the corresponding gene expression profiles meas-
ured under anaerobic conditions (for details about the
examined network reconstruction and the profile data, see
Methods).

Table 1 shows the analyzed networks and the correspond-
ing graph consistency probabilities of the 29 networks
(see additional file 6: the 29 network structures analyzed
in the present study). When we set the significance proba-
bility to 5%, only two networks (Nos. 14 and 28) in Fig.

Table 1: Consistency of the twenty-nine networks with expression profiles measured under anaerobic conditions in Escherichia coli

No. ID Description node edge GCP

1 C9333 detoxification 6 8 1.000
2 C9448 amino acids 6 9 1.000
3 C9449 carbon compounds 6 9 1.000
4 C9426 colanic acid (M antigen) 6(7) 9(11) 1.000
5 C9509 operon 6(7) 9(11) 1.000
6 C9448, C9462 amino acids, formyl-THF biosynthesi 7 10 1.000
7 C9449 carbon compounds 8(9) 7(8) 1.000
8 C9331 motility, chemotaxis, energytaxis 9 8 0.998
9 C9340 flagella 9 8 0.647
10 C9362 nucleoproteins, basic proteins 9 8 0.925
11 C9401 tryptophan 9 8 1.000
12 C9449 carbon compounds 9 8 1.000
13 C9376 cytoplasm 10 9 1.000
14 C9449 carbon compounds 10 9 0.006
15 C9449 carbon compounds 10 11 0.976
16 C9337 SOS response 11 10 0.127
17 C9354 DNA repair 11 10 0.068
18 C9383 arginine 11 10 1.000
19 C9474 nucleotide and nucleoside conversion 11 15 0.378
20 C9493 fermentation 11 10 1.000
21 C9376 cytoplasm 12 11 0.302
22 C9393 isoleucine/valine 13 12 1.000
23 C9420 purine biosynthesis 13 12 1.000
24 C9394 leucine 14 17 1.000
25 C9504 phosphorous metabolism 23 22 1.000
26 C9528 repressor 52(53) 77(79) 1.000
27 C9523 activator 58(59) 92(93) 1.000
28 C9490 anaerobic respiration 89(91) 161(162) 0.016
29 C9372 Transcription related 91(93) 143(146) 0.772

GCP values with less than 5% significance probability are indicated in bold type. The ID in the classification scheme by EcoCyc [44] and the 
corresponding gene function are denoted in the second and third columns, respectively. Two networks in the functions C9448 and C9462 are 
composed of the same constituent genes with the same connectivity. In the following columns, the numbers of nodes and edges of the analyzed 
networks are denoted: the original network was constructed based on the information about the relationship between the transcription factor and 
its regulated genes in EcoCyc, and the analyzed network was constructed from the original network by excluding the genes that were not found in 
the expression profile data from NCBI GEO (accession number: GSE1107) [25]. The numbers of nodes and edges of the original networks are 
denoted in parentheses. The graph consistency probability (GCP) is denoted in the last column.
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5, which are composed of regulatory gene pairs related to
carbon compounds and anaerobic respiration, were
selected among the 29 networks. As seen in the figure, the
network structures are quite different. The network related
to the carbon compounds in Fig. 5A shows a relatively
simple structure that is a two-layer relationship between
one TF and its nine regulated genes. In contrast, the other
network related to anaerobic respiration in Fig. 5B has a
highly complicated form, with 89 nodes and 161 edges.
The selection of the two networks can be interpreted in
terms of biological functions, as described below.

The first network (No. 14) is composed of malT and its
regulated genes. malT is involved in maltose transport
[28]. Besides the malT-regulating network, four networks
related to carbon compounds (Nos. 3, 7, 12 and 15) were
also included in the examined networks, but they showed
no significant probability: the TFs in each network are
araC, galR, gutM, and exuR, and they regulate products

related to the transport of arabinose, galactose, glucitol,
and hexuronate, respectively [29-32]. Among the four net-
works, the galR and exuR-regulating networks (Nos. 12
and 15) are coordinated in terms of their products: the
exuR regulatory gene product controls the expression of
the galacturonate pathway operons (exuT, uxaC, uxuA, and
uxaB) [33]. Interestingly, galactose was the least efficiently
utilized under anaeorbic conditions, among glucose, lac-
tose, galactose, maltose, maltotriose, and maltohexaose
[34]. This fact may be one of the reasons why our method
revealed the consistency of network No. 14 with the data,
and the lack of consistency of two of the networks, Nos.
12 and 15. In the remaining two networks, Nos. 3 and 7,
there are no reasons for their lack of consistency with the
present data. Thus, the detection of the network related to
maltose metabolism is reasonable, at least in comparison
with the galactose- and hexuronate-related networks.

Networks with 5% significance probability in graph consistency searchFigure 5
Networks with 5% significance probability in graph consistency search. By corresponding between the regulatory 
relationships and the gene functions in EcoCyc [44], 29 regulatory networks were reconstructed, and their consistency with 
the expression profiles measured under anaerobic conditions (accession number GSE1107 in NCBI Gene Expression Omnibus 
(GEO); http://www.ncbi.nlm.nih.gov/geo/) [25] was examined. Among the 29 regulatory networks, two networks showed 5% 
significance probability: the network related with carbon compounds (EcoCyc ID: C9449_11) (A) and that with anaerobic res-
piration (EcoCyc ID: C9490_1) (B). The details of the network structures of the 29 regulatory networks are shown in the addi-
tional file 6: the 29 network structures analyzed in the present study.

(A)

(B)
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As for the second network (No. 28), the biological func-
tion is defined as anaerobic respiration, and its detection
is clearly reasonable. The gene encoding the transcription
factor in the network is fnr, one of the seven global regu-
lators in E. coli [35], and the modular controlled by its
product, Fnr, encodes proteins involved in cellular adap-
tation to growth in anoxic environments [36-38]. Since
the network is related to adaptations to environmental
changes, many genes are comprehensively associated with
each other, and the network structure is complex, as seen
in Fig 5B. Thus, the consistency of the fnr-regulating net-
work with the present data demonstrates the validity of
the present method for searching a large-size network con-
sistent with data measured under particular cellular con-
ditions.

It may seem overly strict to estimate the network consist-
ency by the present method. Some other networks besides
the two detected networks might be operating under
anaerobic conditions. However, the strictness of the con-
sistency estimation is one of the prerequisites for explor-
ing unknown networks. The falsely detected networks
should be excluded as much as possible, and the detection
of a few definite network candidates may serve as the ini-
tial step for investigating the unknown networks that are
unexpected, in terms of biological knowledge. In addi-
tion, the strictness for consistency estimation is easily
modified by setting the selection degree with a signifi-
cance probability. As a result, the present method reveals
the strictly consistent networks with the expression pro-
files measured under specific conditions, and will be use-
ful to find the activated network candidates among many
given networks.

Merits and Pitfalls of the Present Method
The present method successfully evaluates the consistency
of a network with the artificial and actual data, which is
expressed as a probability, GCP. The GCP of each known
network is estimated from one set of data in which the
constituent molecules of the network were measured
under one particular condition. Although a large amount
of noise prevents a confident estimation of the GCP, the
present method is robust in terms of the data sampling
dimensions, the parameters in the method, and the net-
work structure variation. The plausibility of the structure
variation and scale is illustrated by the detection of actual
networks for the simple network of the SOS response and
the large and complicated network for anaerobic respira-
tion. Thus, the present method is feasible to evaluate the
consistency of the networks with a set of data measured
under particular conditions.

The present method may be further applied to various
analyses of biological issues. One example is a simple
extension of the demonstration shown in the preceding

section, as follows. Assume that we know more than two
distinctive cell stages, and that we can measure the data of
the constituent molecules in different stages. Then, we
evaluate the consistency of a set of known networks with
the respective data. By this evaluation, we may detect the
activated networks, among the known networks that are
specific to the respective cell stages. For example, the
present method may address the problem of which
known networks are activated in progressive diseases and
in cell differentiation processes. Thus, the present method
will be useful to investigate the network variation in vari-
ous cell stages responding to different environments.
Another example is a utilization of the graphs generated
in GEV modeling. Assume that we know a network model
for a biological phenomenon, and that a few molecules
have been newly detected, and are responsible for the phe-
nomenon. Then, we face the issue of how the newly
detected molecules should be connected to the previous
network. In this situation, our method may present a solu-
tion. A new network is tentatively constructed, by con-
necting the newly detected molecules into the previous
network with the full use of biological knowledge, and
then the consistency of the tentative network is estimated
with the data measured under the conditions where the
relationship of the new molecules with the phenomenon
was found. If the GCP shows the significance probability,
then the network is a promising model for the phenome-
non. If not, then we can list some network candidates with
the significance probability that commonly share the
structure of the previous network, among the generated
networks for the GEV distribution. Note that the present
method aims to evaluate the consistency between the
known network structures and the measured data. Thus,
the network inference without any given network struc-
tures is beyond the present study. At any rate, these two
examples will be demonstrated by appropriate networks
and data in the near future.

In terms of the methodology, the present method is a
rational extension of the previous study based on linear
regression [18], by the combination of the Gaussian net-
work and the extreme value distribution. Indeed, the
application range on the network structure is expanded,
from simple networks with two-layer relationships to
more complex networks with multiple-layer relation-
ships. In addition, the present method is complementary
with the d-sep test; the graph consistency is estimated for
the associations between variables (existence of edges in
the graph) in our method, and in contrast, no associations
between variables (no edges in the graph) are considered
in the d-sep test [14]. However, the d-sep test failed to
select the activated networks: when we set the significance
probability to 5%, 27 networks among the 29 networks
were consistent with the data measured under specific
conditions, and only two networks were not (see addi-
Page 10 of 14
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tional file 7: d-sep test and SEM for 29 network struc-
tures). Interestingly, SEM also failed (see also the
additional file 7): 27 networks among the 29 networks
were consistent with the data, and one of the two remain-
ing networks could not be evaluated, due to a numerical
calculation violation. Thus, our method may be appropri-
ate for tightly estimating the graph consistency in compar-
ison with the d-sep test and SEM. Furthermore, our
method differs from the d-sep test in a strict sense. The
present method is based on the generation of artificial
graphs in the estimation of graph consistency with the
measured data, while the d-sep test is based on the direct
hypothesis of a population distribution [14,16]. Thus, our
method is an asymptotic approach, and is similar to vari-
ous methods for model selection in network inference,
such as various Bayesian network models [8,9]. Note that
the present GCP is an occurrence probability, and defi-
nitely differs from the model selection procedure by using
the scores that show a relative difference.

The consistency of a model with the observed data also
reminds us of the identifiability problem in the compart-
mental models for tracer kinetics [39]. The identifiability
problem addresses the issue of whether the unknown
parameters can be determined uniquely or non-uniquely
from the tracer data. Although a systematic algorithm for
the identifiability problem was proposed regardless of the
model structure [40], its application is limited to the ideal
context of noise-free data. Recently, we have partially
exploited the identifiability problem algorithm to treat
data including noise [41]. Indeed, a network including a
cyclic relationship has been examined to estimate the con-
sistency with noisy data. Although this method has a lim-
itation of the network size to smaller than 10 nodes and
15 edges, another method with a symbolic approach may
partly compensate for the statistical approach presented
here for the limitation of the network structure.

Conclusion
We have proposed a novel method to estimate the consist-
ency of a given network with the measured data as a prob-
ability (GCP: graph consistency probability), based on the
Gaussian network and the generalized extreme value dis-
tribution. The performance of the present method was
validated by application to artificial graphs with simu-
lated data and actual graphs with measured data from
Escherichia coli. The plausible evaluation of the consist-
ency between the network structures and the correspond-
ing measured data promises to help reveal the network
structure variations depending on the environments in a
living cell, as well as to form a bridge between the static
network from the literature and the corresponding meas-
urements.

Methods
Data Generation for Simulation
We generates the numerical data according to a standard
statistical procedure [16]. The data for 10 nodes with 50
sampling dimensions, {Xkl, for k = 1,2,...10, and l =
1,2,...50}, are generated by using the following structural
equations that correspond to the parent-descent relation-
ships in Fig. 1:

where N(0, σ) means a value that follows a normal distri-
bution with a zero mean and a standard deviation of σ,
and αi,j is a path coefficient relating variables i and j. Here,
we set σ to 0.1, and the following parameterization was
used: αi,j = 0.5. Thus, we obtain a graph and examine the
corresponding data to estimate their consistency with the
graph. Note that the above data generated by linear equa-
tions may not precisely reflect the measured data underly-
ing various non-linear relationships. Here, we adopted
the linear relationships as the first approximation to test
the performance of the present method. The performance
for the complex relationships will be tested by actually
measured data.

Recursive Factorization of Causal Graph
Suppose a causal graph is a directed acyclic graph (DAG),
G(Vi, Ej), where Vi is a vertex (i = 1, 2, ..., nv) and Ej is an
edge (j = 1, 2, ..., ne) in the graph. The DAG can be factor-
ized into subgraphs according to the parent-descent rela-
tionships [15]. Then, the joint density function f(Xi),
corresponding to Vi for the graph G, can be factorized into
the conditional density functions according to the graph,
as follows:

where pa{Xi} is the set of variables corresponding to the
parents of Vi in the graph.
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Gaussian Network (GN)
The causal graph meets the measured data based on the
Gaussian network model [20]. On the assumption that
the probability variable Xi is subjected to a multiple nor-
mal distribution, each conditional function in equation
(2) is obtained by linear regression for the measured data
of the constituent nodes (molecules) measured at m
points, i.e.,

where xik is the measured value of Xi, at the k-th point, and
ni is the number of variables corresponding to the parents
of Vi. Thus, the joint density function in equation (2) is
expressed by the regression for the measured data in equa-
tion (3). Finally, the logarithm of the likelihood of the
equation (3) is calculated for the measured data as

Thus, the GN allows us to quantify a given network into
the corresponding numerical value from the measured
data, according to the network form. Note that the calcu-
lation of likelihood itself requires no assumptions on the
relationships between variables. Indeed, the likelihood
can be calculated in the case of non-linear regressions,
such as spline regression.

Generalized Extreme Value Distribution (GEV)
Next, we estimate the probability of l(G0) by using the
generalized extreme value distribution [21]. First, the log-
likelihoods of an ensemble of n networks generated
according to the GN are calculated, and then the maxi-
mum log-likelihood is selected from them. The above
procedure is iterated l times, i.e.,

The distribution of the maximum values by l iterations is
expected asymptotically to be a generalized extreme value
distribution, i.e.,

defined on the set,

where the parameters satisfy -∞ <μ < ∞, σ > 0, and -∞ <ξ <
∞. The model has three parameters: μ, σ, and ξ are a loca-
tion parameter, a scale parameter, and a shape parameter,
respectively. Maximization of the log-likelihood of equa-
tion (6) with respect to the parameter vector (μ, σ, ξ) leads
to the maximum likelihood estimate for any given data-
set, using standard numerical optimization. In the present
study, the R extRemes package [42] was used to fit the data
to the GEV distribution.

Note that the standard likelihood ratio test [43] cannot be
applied straightforwardly to a Gaussian network in the
present case. This is because the density function of the
population and the degrees of freedom in the likelihood
ratio test are unclear when maximizing the likelihoods of
the generated graphs. In the present method, the GEV dis-
tribution of the maximum values of likelihoods in the
blocks of generated graphs is adopted analogically,
instead of the maximum likelihood in the likelihood ratio
test. The utilization of the GEV distribution requires the
model fitting to the data, but allows us to set the signifi-
cance probability arbitrarily, as usual in statistical tests.

Graph Consistency Probability (GCP)

If the goodness of fitness of the maximum values from the
generated graphs is ascertained, then the occurrence prob-
ability of a given graph (GCP: graph consistency probability)
can be directly estimated by corresponding the l(G0) in
equation (1) to the probability density function of GEV
obtained in (6), i.e.

Thus, the present method expresses the consistency in the
form of a probability. The probability examines the possi-
bility of whether the tested known networks are activated
in the environment where the data were measured. If the
probability is small, which corresponds to a large likeli-
hood value, then the data are generated, according to the
molecular relationships in the network.
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Actual Networks and Data for High-Throughput 
Consistency Search
We first classified a transcription factor (TF) and its regu-
lated genes compiled in EcoCyc [44], according to the
classification scheme of gene functions http://biocyc.org/
ECOLI/class-tree?object=Genes. Using the gene sets of the
TF and the regulated genes in each function, we next
reconstructed the networks: respective networks were
reconstructed, so as to form the network structure with as
many connections between the genes as possible. Thus,
we obtained 130 regulatory networks that are character-
ized by biological functions. Since some networks were
characterized by more than two functions, the 130 regula-
tory networks were redundant in terms of the connectivity
and the constituent genes. Then, 29 networks were kept,
after excluding the redundancy and the small networks
with less than 8 edges (see Table 1 and additional file 6:
29 network structures analyzed in the present study).

The consistency of each of the 29 networks was estimated
with one set of expression profiles measured under 22 dif-
ferent anaerobic conditions (GSE1107) [25] cited from
NCBI GEO [45]. The expression profiles were standard-
ized by the average and the standard deviation in each
condition, as preprocessing of the measured data. In a few
nodes (genes) in the original network constructed from
the information in EcoCyc, the corresponding expression
profiles were not found in the analyzed data (GSE1107),
and the corresponding parts in the network were
excluded.

Authors' contributions
SS carried out the implementation and the calculations,
and participated in the design of the study. SA participated
in the design of the study, and helped to draft the manu-
script. KH conceived of the study, participated in its
design and coordination, and drafted the manuscript. All
authors read and approved of the final manuscript.

Additional material

Acknowledgements
S.A. was supported by a Grant-in-Aid for Scientific Research (grant 
18681031), and K.H. was partly supported by a Grant-in-Aid for Scientific 
Research on Priority Areas "Systems Genomics" (grants 18016008 and 
20016028) and by a Grant-in-Aid for Scientific Research (A) (grant 
19201039), from the Ministry of Education, Culture, Sports, Science and 
Technology of Japan.

Additional file 1
Details of the schematic description of the procedure. The graph factor-
ization at Step 1 and the four GEV-diagnostic plots of the probability plot, 
the quantile plot, the return-level curve, and the density plot at Step 4 
(PDF file) are shown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S1.pdf]

Additional file 2
Robustness in terms of data dimensions. Four GEV-diagnostic plots of 
the probability plot, the quantile plot, the return-level curve, and the den-
sity plot (PDF file) are shown for the 15- and 30-dimension data, respec-
tively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S2.pdf]

Additional file 3
Robustness in terms of the parameters. Four GEV plots (PDF file) are 
shown when two parameters were set as follows: l was set to 25, 50 and 
100, and n was set to 100, 500, and 1000.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S3.pdf]

Additional file 4
Robustness in terms of the noise according to the gamma and uniform 
distributions. GCP(=P(l(G0))) for the graph in Fig. 1 was calculated 
with simulated data according to the gamma and uniform distributions, 
and the frequencies of GCPs are plotted against the probability degree. 
The horizontal axis indicates the log(GCP) value, and the vertical axis is 
its frequency: black-colored bar, λ = 1 in gamma distribution; gray-colored 
bar, λ = 3; striped bar, λ = 5; and boxed bar, between 0 and 1 in uniform 
distribution.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S4.pdf]

Additional file 5
Robustness regarding the network structure variation. GEV plots (PDF 
file) are shown for the three types of network structures in Fig. 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S5.pdf]

Additional file 6
The 29 network structures analyzed in the present study. The 29 regu-
latory networks of Escherichia coli with more than 8 edges (PDF file) are 
shown, as constructed from the information on the regulatory relation-
ships between two genes in EcoCyc [44].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S6.pdf]

Additional file 7
SEM and d-sep test for 29 network structures. The 29 regulatory net-
works of Escherichia coli were also tested by SEM and the d-sep test.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-2-84-S7.pdf]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S1.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S2.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S3.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S4.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S5.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S6.pdf
http://www.biomedcentral.com/content/supplementary/1752-0509-2-84-S7.pdf
http://biocyc.org/ECOLI/class-tree?object=Genes
http://biocyc.org/ECOLI/class-tree?object=Genes


BMC Systems Biology 2008, 2:84 http://www.biomedcentral.com/1752-0509/2/84
References
1. Bonetta L: Bioinformatics-from genes to pathways.  Nature

Methods 2004, 1:169-176.
2. Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A,

Daraselia N, Mazo I: Automatic pathway building in biological
association networks.  BMC Bioinformatics 2006, 7:171.

3. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Laten-
dresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang
P, Karp PD: The MetaCyc Database of metabolic pathways
and enzymes and the BioCyc collection of Pathway/Genome
Databases.  Nucl Acids Res 2008, 36:D623-D631.

4. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ,
Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C,
Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF:
Inflammation and Host Response to Injury Large Scale Col-
laborative Research Program. A Network-Based Analysis of
Systemic Inflammation in Humans.  Nature 2005,
437:1032-1037.

5. Rudd MF, Webb EL, Matakidou A, Sellick GS, Williams RD, Bridle H,
Eisen T, Houlston RS, GELCAPS Consortium: Variants in the GH-
IGF axis confer susceptibility to lung cancer.  Genome Res 2006,
16:693-701.

6. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D,
Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky
V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS,
Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JKV,
Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Krishna Pant PV, Ball-
inger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N,
Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu
VE, Vogelstein B: The Genomic Landscapes of Human Breast
and Colorectal Cancers.  Science 2007, 318:1108-1113.

7. Bateman A: Editorial.  Nucl Acids Res 2008, 36:D1.
8. Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian net-

works to analyze expression data.  J Comp Biol 2000, 7:601-620.
9. Ghahramani Z: Learning Dynamic Bayesian Networks.  Adaptive

Processing of Sequences and Data Structures 1998:168-197.
10. Akutsu T, Miyano S, Kuhara S: Algorithms for inferring qualita-

tive models of biological networks.  Proc Pacific Symp Biocomput
2000:290-301.

11. Toh H, Horimoto K: Inference of a genetic network by a com-
bined approach of cluster analysis and graphical Gaussian
modeling.  Bioinformatics 2002, 18:287-297.

12. Wright S, Adhya S: The method of path coefficients.  Ann Math
Statist 1934, 5:161-215.

13. Joreskog KG: A general method for analysis of covariance
structures.  J Biometrika 1970, 57:239-251.

14. Shipley B: A new inferential test for path models based on
directed acyclic graphs.  Structural Equation Modeling 2000,
7:206-218.

15. Pearl J: Probabilistic Reasoning in Intelligent Systems California, Kaufmann
Morgan Publishers; 1988. 

16. Shipley B: Cause and Correlation in Biology: A User's Guide to Path Analysis,
Structural Equations, and Causal Inference Oxford, Oxford University
Press; 2000. 

17. Bisits AM, Smith R, Mesiano S, Yeo G, Kwek K, MacIntyre D, Chan
EC: Inflammatory aetiology of human myometrial activation
tested using directed graphs.  PLoS Comput Biol 2005, 1:132-136.

18. Herrgard MJ, Covert MW, Palsson BO: Reconciling gene expres-
sion data with known genome-scale regulatory network
structures.  Genome Research 2003, 13:2423-2434.

19. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the
transcriptional regulation network of Escherichia coli.  Nat
Genet 2002, 31:64-68.

20. Whittaker J: Graphical Models in Applied Multivariate Statistics New
York, John Wiley and Sons; 1990. 

21. Coles S: An Introduction to Statistical Modeling of Extreme Values London,
Springer-Verlag; 2001. 

22. Smith RL: Maximum likelihood estimation in a class of non-
regular cases.  Biometrika 1985, 72:67-90.

23. Bender EA, Canfield ER, McKay BD: The asymptotic number of
labeled graphs with n vertices, q edges, and no isolated ver-
tices.  J Combinatorial Theory, Series A 1997, 80:124-150.

24. Ronen M, Rosenberg R, Shraiman BI, Alon U: Assigning numbers
to the arrows: Parameterizing a gene regulation network by
using accurate expression kinetics.  Proc Natl Acad Sci 2002,
99:10555-10560.

25. Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO: Inte-
grating high-throughput and computational data elucidates
bacterial networks.  Nature 2004, 429:92-96.

26. Kenyon CJ, Walker GC: DNA-damaging agents stimulate gene
expression at specific loci in Escherichia coli.  Proc Natl Acad Sci
1980, 77:2819-2823.

27. Little JW, Mounta DW: The SOS regulatory system of
Escherichia coli.  Cell 1982, 29:11-22.

28. Chapon C: Expression of malT, the regulator gene of the mal-
tose region in Escherichia coli, is limited both at transcrip-
tion and translation.  EMBO J 1982, 1:369-374.

29. Lee NL, Gielow WO, Wallace RG: Mechanism of araC autoreg-
ulation and the domains of two overlapping promoters, Pc
and PBAD, in the L-arabinose regulatory region of
Escherichia coli.  Proc Natl Acad Sci 1981, 78:752-756.

30. Hugovieux-Cotte-Pattat N, Robert-Baudouy J: Regulation and
transcription direction of exuR, a self-regulated repressor in
Escherichia coli K-12.  J Mol Biol 1982, 156:221-228.

31. Yamada M, Saier MH: Positive and negative regulators for glu-
citol (gut) operon expression in Escherichia coli.  J Mol Biol
1988, 203:569-583.

32. Weickert MJ, Adhya S: Control of transcription of gal repressor
and isorepressor genes in Escherichia coli.  J Bacteriol 1993,
175:251-258.

33. Portalier RC, Robert-Baudouy J, Stoeber F: Regulation of
Echerichia coli K-12 hexuronate system genes: exu regulon.
J Bacteriol 1980, 143:1095-1107.

34. Muir M, Williams L, Ferenci T: Influence of Transport Energiza-
tion on the Growth Yield of Escherichia coli.  J Bacteriol 1985,
163:1237-1242.

35. Martinez-Antonio A, Collado-Vides J: Identifying global regula-
tors in transcriptional regulatory networks in bacteria.  Curr
Opin Microbiol 2003, 6:482-489.

36. Lynch AS, Lin EC: Responses to molecular oxygen. In
Escherichia coli and Salmonella typhimurium.  In Cellular and
Molecular Biology 2nd edition. Washington DC; 1996:1526-1539. 

37. Unden G, Schirawski J: The oxygen-responsive transcriptional
regulator FNR of Escherichia coli: the search for signals and
reactions.  Mol Microbiol 1997, 4:205-210.

38. Unden G, Achebach S, Holighaus G, Tran HG, Wackwitz B, Zeuner
Y: Control of FNR function of Escherichia coli by O2 and
reducing conditions.  J Mol Microbiol Biotechnol 2002, 4:263-268.

39. Cobelli C, Foster D, Toffolo G: Tracer Kinetics in Biomedical Research:
From Data to Model New York, Kluwer Academic/Plenum Publishers;
2000. 

40. Buchberger B: An Algorithmic Criterion for the Solvability of
a System of Algebraic Equations.  In Peer review in Gröbner Bases
and Applications Volume 251. Edited by: Buchberger B, Winkler F. Lon-
don, Mathematical Society Lecture Notes Series; 1998:535-545. 

41. Yoshida H, Nakagawa K, Anai H, Horimoto K: An algebraic-
numeric algorithm for the model selection in kinetic net-
works.  Proceedings of 10th CASC. LNCS 4770 2007:433-447.

42. Gilleland E, Katz RW: Analyzing seasonal to interannual
extreme weather and climate variability with the extremes
toolkit (extRemes).  18th Conference on Climate Variability and
Change, 86th American Meteorological Society (AMS) Annual Meeting
2006:2-15.

43. Lehmann EL: Testing Statistical Hypotheses 2nd edition. New York, John
Wiley and Sons; 1986. 

44. Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M,
Paley SM, Paulsen I, Collado-Vides J, Gama-Castro S, Peralta-Gil M,
Santos-Zavaleta A, Penaloza-Spinola MI, Bonavides-Martinez C, Ingra-
ham J: Multidimensional annotation of the Escherichia coli K-
12 genome.  Nucl Acids Res 2007, 35:7577-7590.

45. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C,
Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: Mining
tens of millions of expression profiles – database and tools
update.  Nucleic Acid Res 2007, 35:D760-D765.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16563163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16563163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17965431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16136080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16136080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16136080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16741161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16741161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17932254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17932254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16110333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16110333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12145321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12145321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12145321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15129285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6771759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6771759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7049397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7049397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6325162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6325162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6325162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6262769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6262769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6262769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6808145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6808145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6808145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3062173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3062173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8416900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8416900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6997263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6997263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3928598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3928598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14572541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14572541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17940092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17940092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17099226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17099226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17099226

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Calculation of Graph Consistency Probability (GCP)
	Robustness of the Present Method
	Robustness in Terms of the Dimensions of the Analyzed Data
	Robustness in Terms of Parameters in Generating the GEV Model
	Robustness in Terms of the Magnitude of Noise in the Analyzed Data
	Robustness Regarding the Variation of the Network Structure
	Examinations of Actual Graphs
	Verification for a Simple Network
	Demonstration for an Actual Network Set
	Merits and Pitfalls of the Present Method

	Conclusion
	Methods
	Data Generation for Simulation
	Recursive Factorization of Causal Graph
	Gaussian Network (GN)
	Generalized Extreme Value Distribution (GEV)
	Actual Networks and Data for High-Throughput Consistency Search

	Authors' contributions
	Additional material
	Acknowledgements
	References

