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Abstract
Background: Computational identification of new drug targets is a major goal of pharmaceutical
bioinformatics.

Results: This paper presents a machine learning strategy to study and validate essential enzymes
of a metabolic network. Each single enzyme was characterized by its local network topology, gene
homologies and co-expression, and flux balance analyses. A machine learning system was trained
to distinguish between essential and non-essential reactions. It was validated by a comprehensive
experimental dataset, which consists of the phenotypic outcomes from single knockout mutants of
Escherichia coli (KEIO collection). We yielded very reliable results with high accuracy (93%) and
precision (90%). We show that topologic, genomic and transcriptomic features describing the
network are sufficient for defining the essentiality of a reaction. These features do not substantially
depend on specific media conditions and enabled us to apply our approach also for less specific
media conditions, like the lysogeny broth rich medium.

Conclusion: Our analysis is feasible to validate experimental knockout data of high throughput
screens, can be used to improve flux balance analyses and supports experimental knockout screens
to define drug targets.

Background
Defining drug targets and drug design is one of the major
goals in biomedical research. In particular, metabolic
enzymes have been successfully targeted by specific drugs
to inhibit essential processes of pathogenic organisms in
the human host [1]. Analyzing the metabolic network in

silico helps to identify enzymes that are essential for the
survival of the organism [2,3]. A general model for the
metabolic network has been described by graph theoreti-
cal approaches and was applied to identify drug targets in
pathogenic organisms [4]. The term 'damage' was used to
assess enzymes that may serve as drug targets when their
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inhibition influences a substantial number of down-
stream metabolic reactions and products [5]. Further-
more, concepts of choke points and load points were
successfully applied to estimate the essentiality of an
enzyme [2,3]. Load points were defined as hot spots in the
metabolic network (enzymes/metabolites) based on the
ratio of the number of k-shortest paths passing through a
metabolite/enzyme (in/out), and the number of nearest
neighbor links (in/out) attached to it. This ratio was com-
pared to the average load value in the network [2]. Choke
points uniquely consume or produce a certain metabolite,
which may make them indispensable. For example, in
Plasmodium falciparum d-aminolevulinate dehydratase
(ALAD) has been considered as a choke point [3] and was
proven experimentally to serve as a valid antimalarial tar-
get [6].

Flux balance analyses (FBA) is a widely used and well
established method to assess the essentiality of genes
[7,8]. However, FBA approaches need clear definitions of
nutrition availability and biomass production under spe-
cifically given environmental conditions (for a good over-
view of these aspects see e.g. [9]). High-throughput
experiments have been performed to investigate the essen-
tiality of a major portion or all genes in an organism [10-
12]. For Escherichia coli, the essentiality of virtually all
open reading frames was observed by a comprehensive
knockout screen (KEIO collection [10]). This data enables
to test the performance of an in silico metabolic model
that predicts essential genes. Analyzing flux balances
under aerobic glucose condition using the COBRA tool-
box [13] and a newly reconstructed metabolic network of
E. coli yielded 92% accuracy when predicting the essenti-
ality of genes [8]. Feist and co-workers compared their
predictions with the KEIO collection and yielded 88% for
rich media conditions. In another study, FBA and the cor-
responding experimental knockout screen was performed
to study the opportunistic behavior of the pathogen Pseu-
domonas aeruginosa with a systems view [14].

In this paper we propose an integrative machine learning
approach applying a broad list of the described tools. The
machine learning system was supplied with qualitative
and quantitative descriptors derived from biochemical
knowledge, genomic and transcriptomic data, and flux
balance analyses. Using the KEIO collection [10] as the
gold standard, we yielded an overall accuracy of 93% for
rich media conditions. Comparative analysis between the
flux balance approach and our machine learning
approach yielded some improvements for FBA, namely to
consider aminyl-tRNA reactions in modeling. Predictions
that contradicted the KEIO collection were experimentally
tested and successfully used to detect errors in the experi-
mental data. Predicted reactions matching the experimen-
tal screen strengthen their candidacy as potential drug

targets. Supporting this claim, 19 out of 37 predictions for
novel targets were found in other literature with reported
experimental evidence.

Methods
Network reconstruction
The data for the metabolic network was taken from a pre-
vious study and reconstructed in the same way (iAF1260,
see Feist and co-workers [8]). Basically, the metabolic net-
work was represented as an undirected bipartite graph
consisting of metabolites and reactions as alternating
nodes. This network was taken for our flux balance analy-
ses. For all other analyses, unspecific compounds such as
water, ATP, etc. were discarded.

The gold standard
In order to demonstrate the efficiency of our approach we
used data from the KEIO collection [10] as the gold stand-
ard. The dataset consisted of the phenotypic outcomes
from a set of knockout mutants of single genes and was
used to define the classes "essential" and "non-essential"
for our reactions. Genes were knocked out by in-frame
replacement of a PCR product containing a kanamycin
resistance gene. The start-codon and the up-stream trans-
lational signal were not replaced and fully intact. After
kanamycin treatment, in-frame single gene deletions were
verified by PCR with loci specific primers. When they were
unable to create a mutant that formed colonies on a plate,
the mutated gene was considered to be essential. Knock-
out experiments were performed in LB rich medium and
in glucose minimal medium, resulting in two datasets
(denoted as rich medium and glucose minimal medium,
respectively). For the rich medium, out of 4,288 tested
genes, for 303 genes no mutants were found and therefore
defined as being essential. Genes that were considered to
be essential under rich medium condition were also con-
sidered as essential under glucose minimal medium con-
dition. Additionally, to these genes, 119 genes were
assigned to be essential in glucose minimal medium as
they showed very slow growth in minimal media (growth
rate ≤ 0.0926 in 24 hours). Experimental criteria for gene
essentiality on glucose minimal medium are described in
detail in [8,12]. Genes were mapped to the corresponding
proteins, enzymes and reactions using the gene-protein-
reaction Table from Feist et al. [8]. The reaction(s) associ-
ated with each gene were defined as essential or non-
essential if there was no other way to activate the reac-
tion(s) by other genes and if the coding gene was experi-
mentally essential or non-essential, respectively.
Otherwise they were discarded from our training and test-
ing analysis. Furthermore, 133 reactions were discarded
from the analysis, as the corresponding genes couldn't be
defined. Finally, from 303 essential genes we determined
a set of 231 essential and 1125 non-essential reactions
under rich medium. Out of these 1125 non-essential reac-
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tions under rich medium, 107 reactions were defined as
essential under glucose minimal medium. In total, 1356
reactions were used and the experimental results (KEIO)
for their essentiality were taken as class labels of the reac-
tions (samples) for training and validating the classifiers.
Note that, we didn't use this experimental data for any fea-
tures of the reactions.

Defining the features
A list of relevant features was obtained from three differ-
ent aspects: network topology, genomics and flux balance
analyses. Table 1 gives an overview of all features and their
abbreviations.

Topology based features
We set up a breadth first algorithm to investigate the net-
work when a single reaction was blocked. We defined a
reaction as essential for survival when basically the
mutated network could not yield the products of the reac-
tion from upstream substrates of the reaction. Hence, fea-
tures were defined to describe if the knocked out reaction
was substantial for producing its downstream metabolites
or if these products could still be produced by other path-
ways. The investigation for each tested knocked out reac-
tion was performed by the following algorithm.

Table 1: List of all features

Short form Explanation

Topology features: local structures
RUPa Reachable/Unreachable Products (RUP): more than or equal to one product cannot be produced when blocking a reaction
PUP Percentage of Unreachable Products (PUP): the percentage of products which cannot be produced when blocking a reaction
NSa Number of Substrates (NS)
NPa Number of Products (NP)
NNRa Number of Neighbouring Reactions (NNR)
NNNRa Number of Neighbours of Neighbouring Reactions (NNNR)
CCVa Clustering Coefficient Value (CCV): clustering coefficient of a reaction
DIRa Directionality of a reaction (DIR)

Topology features: deviations, choke points, load scores and damage
ND Number of Deviations (ND)
APL Average Path Length (APL): the average path length of the deviations
LSPa Length of Shortest Path (LSP): the length of the shortest path of the deviations
CP Choke Point (CP): a reaction is a choke point or not (Rahman et al, 2006)
LSa Load Score (LS): load score of a reaction (Rahman et al, 2006)
NDRa Number of Damaged Reactions (NDR): the number of damaged reactions after blocking a reaction (Lemke et al, 2004)
NDCa Number of Damaged Compounds (NDC): the number of damaged compounds after blocking a reaction (Lemke et al, 2004)
NDRDa Number of Damaged Reactions having no Deviations (NDRD): the number of damaged reactions that have no other alternative paths 

to be reached after blocking a reaction
NDCDa Number of Damaged Compounds having no Deviations (NDCD): the number of damaged compounds that have no other alternative 

paths to be reached after blocking a reaction
NDCRa Number of Damaged Choke point Reactions (NDCR): the number of damaged choke point reactions after blocking a reaction
NDCCa Number of Damaged Choke point Compounds (NDCC): the number of damaged choke point compounds after blocking a reaction
NDCRDa Number of Damaged Choke point Reactions having no Deviations (NDCRD): the number of damaged choke point reactions that 

have no other alternative paths to be reached after blocking a reaction
NDCCDa Number of Damaged Choke point Compounds having no Deviations (NDCCD): the number of damaged choke point compounds 

that have no other alternative paths to be reached after blocking a reaction

Gene expression data, genomic data and miscellaneous
NCGa Number of Coding Genes (NCG): the number of coding genes for a reaction
H10a Homology at 10-10 (H10): the number of homologous genes with e-value cutoff 10-10

H7 Homology at 10-7 (H7): the number of homologous genes with e-value cutoff 10-7

H5a Homology at 10-5 (H5): the number of homologous genes with e-value cutoff 10-5

H3a Homology at 10-3 (H3): the number of homologous genes with e-value cutoff 10-3

NRSGa,b Number of Reactions from Same Genes (NRSG): the number of reactions derived from the same genes
NRSEa,b Number of Reaction having Similar Expression 

(NRSE): the number of reactions that have similar expression (correlation coefficient >0.8)
MCCa,b Maximum of Correlation Coefficients (MCC): maximum value of the correlation coefficients for all neighbouring reactions

Flux distribution
BFVa Biomass Flux Value (BFV): biomass flux value when blocking a reaction (under aerobic glucose condition)

athe optimized features, bfeatures from gene expression
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i. All metabolites acting as input nodes (substrates) and
output nodes (products) of the knocked out reaction were
selected. The set of substrates S defined the input nodes
and the set of products P defined the output nodes. To get
a broader list of available substrates we integrated several
other substrates into S. We included the substrates of the
upstream reactions and the products of the downstream
reactions into the sets S and P, respectively. Substrates of
reactions that had at least one of the substrates S as a sub-
strate was included into S. Further, substrates of reactions
that had a metabolite out of P as a substrate were also
included into S.

ii. Reactions were selected which used only available com-
pounds as substrates.

iii. These selected reactions and their products were incor-
porated into the network. These products were set as new
available metabolites in the network.

iv. Steps ii and iii were repeated until no further reactions
could be identified for incorporation.

v. The output nodes that could be produced were counted
(reachable products P).

After finishing the process, we used the number of defined
output nodes that could be produced within the mutated
network for two features, i.e. a quality feature defining if
at least one product could not be produced (RUP, reacha-
ble/unreachable products), and the percentage of prod-
ucts that could not be produced (PUP, percentage of
unreachable products).

We again run a breadth first search on the network to esti-
mate possible deviations. This time we focused on rele-
vant pathways by using the similarity measure from the
SIMCOMP software [15]. SIMCOMP was used to define
the most relevant substrates and products of each reac-
tion. Starting from S, the breadth first search explored the
network for finding the direct products of the knocked out
reaction. When the algorithm visited these products, it
stored the corresponding pathway and continued its
search to find further alternative paths until the network
was entirely explored or a maximal path length of 10 reac-
tions was reached. We took the average path length (APL,
average path length) and the shortest path length (LSP,
length of shortest path) of the deviations as features for
the classifier. The deviation features were used to find
alternative pathways to produce products of the knocked
out reaction by its substrates S. In the metabolic network,
these substrates can also be consumed by other reactions
yielding their products etc. Therefore, we kept track of
alternative paths in the metabolic network for the poten-
tial of the organism to survive when a reaction was

blocked. The organism may have many pathways to pro-
duce the products making the system more robust. Thus,
we counted the number of possible alternative paths
yielding feature ND (ND, number of deviations).

Choke points, load points and damage
A reaction that uniquely consumes or produces a certain
metabolite in the metabolic network is considered a
choke point. Such a reaction shows high potential for
essentiality [2,3]. We checked if an observed reaction was
a choke point (CP, choke points). According to the con-
cept of load scores from [2], we computed a load score of
a reaction from the average number of pathways passing
through the reaction, in comparison to the number of
pathways for all metabolites in the network. We used the
definition of damaged compounds/reactions reported by
[5]. Basically, damage was defined by determining the
potentially effected metabolites and reactions down-
stream of the knocked out reaction. We applied their def-
inition for calculating the features NDR (NDR, number of
damaged reactions) and NDC (number of damaged com-
pounds). In turn, some damaged compounds/reactions
might have been produced from alternative pathways.
Therefore, we calculated the number of damaged com-
pounds/reactions that did not have an alternative way to
be reached from the substrates of the knocked out reac-
tion (NDRD, number of damaged reactions having no
deviations; NDCD, number of damaged compounds hav-
ing no deviations). In addition to our analysis on dam-
aged compounds/reactions, we also included the number
of damaged choke points (NDCR, number of damaged
choke point reactions; NDCC, number of damaged choke
point compounds; NDCRD, number of damaged choke
point reactions having no deviations; NDCCD, number of
damaged choke point compounds having no deviations).

Local topology features
The number of substrates and products of the knocked out
reaction were counted (NS, number of substrates, and NP,
number of products, respectively). Further, we defined
features for the number of neighbouring reactions (NNR,
number of neighbouring reactions), the number of neigh-
bours of neighbouring reactions (NNNR, number of
neighbours of neighbouring reactions) and the clustering
coefficient (CCV, clustering coefficient values) [16,17] of
the knocked out reaction. The reaction direction (DIR,
directionality of a reaction) was taken from the model
from Feist et al.[8].

Gene expression data, genomic data and miscellaneous
For our case study, we collected gene expression data from
a study observing the regulation during oxygen depriva-
tion [18]. This dataset was taken to have a rather unspe-
cific regulation, i.e. not of a small band but of a broad
range of effected metabolic pathways. The gene expression
Page 4 of 11
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data of each data-set was mapped onto the corresponding
reactions. For a reaction that was catalysed by a complex
of proteins, we took the mean of the gene expression val-
ues for the corresponding genes (for more details see
[19]). Genes in the same pathway often show co-regula-
tion [20]. Therefore, the maximum correlation coefficient
of all neighboring reactions of the knocked out reaction
(MCC, maximum correlation coefficient) and the number
of reactions having similar gene expression (correlation
coefficient > 0.8) were calculated (NRSE, number of reac-
tions having similar expression). Together with the
number of reactions coming from the same gene (NRSG,
number of reactions from same genes), these features
served the machine for estimating if the knocked out reac-
tion was in a biosynthesis or degradation pathway. We
also included the number of homologous genes that
might have taken over the function of the knocked out
gene. Homologous genes were searched using Blast [21]
against all open reading frames of E. coli with four differ-
ent e-value cutoffs, i.e. 10-3, 10-5, 10-7, and 10-10 yielding
the features H3, H5, H7 and H10, respectively. The
method of the flux balance simulations is described in
Results and discussion (section Comparing the perform-
ance to the performance of flux balance analyses).

Machine learning
We applied Support Vector Machines from the R package
e1071 [22] to classify between essential and non-essential
reactions of the metabolic network. A radial basis func-
tion was used as the kernel function. Parameter optimiza-
tion was performed for the regularization term that
defined the costs for false classifications (5 steps for each,
range: 2n, n = -4, -2, 0, 2, 4). The same range was taken for
the kernel width γ. This optimization was realized by
training with a grid search over all combinations of these
parameters [22]. The sizes of the two classes differed sig-
nificantly in our data set (essential: 17%, non-essential:
83%). For a broad spectrum of different precisions and
sensitivities, we varied the weight factor for the positive
instances from the data set with the optimized feature set
in the range of 0.1 to 5.0. We performed a leave-one-out
cross validation to measure the effectiveness of the
machine learning method. A single reaction was selected
as the validation data to be predicted and the remaining
reactions as the training data. This was repeated for each
reaction in the data set. For assessing the performance of
the classifiers, we calculated the standard measures accu-
racy (number of correctly predicted reactions/number of
all predicted reactions), sensitivity (number of true posi-
tives/(number of true positives + number of false nega-
tives)), specificity (number of true negatives/(number of
true negatives + number of false positives)), positive pre-
diction value or precision (number of true positives/
number of positively predicted reactions), negative pre-

diction value (number of true negatives/number of nega-
tively predicted reactions).

Feature selection
The feature selection was done by a top-down approach.
We trained the Support Vector Machines in terms of max-
imizing the overall accuracy using all features. Each single
feature was discarded from the data set and the perform-
ance of the machine was observed. Testing the perform-
ance of the machine was done by a leave-one-out cross
validation. The accuracies of the machines missing one
feature were compared and the best machine kept for the
next iteration. This was repeated until the accuracy did not
increase. The machine with the best accuracy was selected
as the best classifier and its features as the optimized fea-
ture set.

Experimental protocol for the knockout verification
Knockout mutations were verified by PCR amplification
of genomic loci expected to contain the 1327 base pair
gene replacement cassette with specific primers (Table S4
in Additional file 1). Primers were chosen to have equal
predicted melting temperatures of ~60°C and hybridised
at specific distances upstream and downstream of the tar-
get gene. PCR reactions were performed directly from
freshly grown bacterial colonies for 30 cycles at the
annealing temperature of 54°C. The product sizes
obtained from the KEIO collection strains were compared
to those from the wild-type E. coli strain MG1655 on 1%
agarose gels.

Assembling a list of drug targets
To map enzymes with drug targets, drugs and their corre-
sponding drug targets were selected from the drug data-
base Drugbank [23]. We took drugs into account that
affected any organism excepting humans and other mam-
mals. Entries that were found as metabolites for a reaction
in the KEGG database [24] were discarded to restrict our
drug list to non-endogenous compounds. The targets'
annotated EC numbers of the remaining drugs were col-
lected as our validated drug targets.

Results and discussion
An overview of the machine learning procedure is shown
in Figure 1. The machine learning system was trained and
validated with a large set of features. Firstly, local topology
based features where used to qualitatively describe possi-
ble flux deviations. Secondly, choke and load points were
defined and damage was used to describe the qualitative
flux load and down stream effects of the knocked down
reaction. Thirdly, functional genomics data, such as co-
expression of genes for up- and down-stream reactions
was used to indicate conjoint reactions in a pathway. In
addition to these features, we considered the existence of
homologous genes for the corresponding knockout reac-
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Schematic overview of the methodFigure 1
Schematic overview of the method. For each reaction, features were calculated describing 1) its local topology in the 
metabolic network, 2) its genomic and transcriptomic relations, and 3) biomass production using flux balance analyses when 
discarding the reaction. E.g. if a given reaction i had three educts, one product and 4 neighbors, the feature NS (number of sub-
strates), NP (number of products), and NNR (number of neighboring reactions) were set to 3, 1 and 4, respectively. A table 
for the reaction profiles was created and used for training the classifier to distinguish between essential and non-essential reac-
tions. A Support Vector Machine (SVM) was applied as a classifier to find the optimal separating hyperplane.
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tion, which may be expected to take over the function of
the knocked out gene. Finally, we used flux balance anal-
yses to estimate the network's biomass production follow-
ing knocking out a reaction. A list of all features is given in
Table 1.

Performance of the machine learning algorithm
Due to the small data set of 1356 reactions for training
and validation, we performed a leave-one-out cross vali-
dation to measure the effectiveness of our machine learn-
ing system. Using the KEIO-collection data of rich
medium as the reference, we gained an overall accuracy of
92% when all features were taken (Table 2). To increase
the performance, we did a systematic feature reduction
within a top-down procedure. We yielded a better result
with an optimized feature set of 25 features (accuracy =
93%, see Table 2). These 25 features may be regarded as
the dominating factors for leading to a good performance.
To find out which of them are more relevant, we again
started the top down procedure, now stopping at the first
step. For all features, we compared the accuracy for each
classifier lacking of one feature, respectively. It turned out
that loosing the feature NNNR yielded the worst classifi-
cation performance (accuracy -0.89 compared to the clas-
sifier with all features) and therefore hinting for being the
most relevant feature. This feature was followed by NRSE
(-0.82), BFV (-0.74), NNR (-0.52) and H10 (-0.52). Inter-
estingly, these first five features span already the whole set
of our feature categories (NNNR and NNR: network
toplogy; NRSE: gene expression, genomics; H10: homol-
ogy, genomics; and BFV: flux balance analysis).

The sizes of the two classes "essential reactions" and "non-
essential reactions" differed significantly in our data set
(essential: 17%, non-essential: 83%). For obtaining differ-
ent stringencies, we weighted the positive instances by a
factor ranging from 0.1 to 5.0 with a step size of 0.1 (Fig-
ure 2). The sensitivity increased significantly from smaller
to higher weights, reaching a plateau for weight factors of
1.0 or more. As expected, with a smaller weight the classi-
fier tended to be overwhelmed by the large negative class.

More positive instances were recognized when their
weight factor increased. The highest specificity (99%) and
the best precision (95%) was yielded by the first data
point with a weight factor of 0.1. This is beneficial when
predicting drug targets with high reliability. Alternatively,
to avoid overlooking potential targets, increased sensitiv-
ity can be achieved by raising weight factor to at least 1.0
(sensitivity = 75%). In the following, all analyses were
performed with a weight factor of one.

Identifying drug targets
We compared the enzymes of our predictions and the
results from the KEIO collection to a comprehensive list of
valid drug targets from the Drugbank database [23] (Fig-
ure 3). Surprisingly, 80% of the drug target enzymes were
neither found by the KEIO high-throughput screen nor by
our machine. This may be due to the fact that these drug
targets are for a broad range of organisms having different
topologies of the metabolic networks and may have dif-
ferent alternative pathways for the corresponding drug tar-
gets. It should be noted that this study focused on
reactions being essential under rich media conditions. We
suggest 37 promising drug target enzymes that are not in
the Drugbank database, which are validated by the inter-
section of our predictions with the results from the exper-
imental KEIO screen. A list of these reactions with
references for reported experimental evidences is given in
Table S1 [in Additional file 1].

Comparing the performance of the machine learning 
approach to flux balance analyses
We performed a single reaction deletion on the network
and calculated flux values by FBA using the Cobra Tool-
box [13] to assess essential reactions under aerobic glu-
cose minimal media conditions (as described in the
supplementary material of Feist et al. 2007). In this anal-
ysis, a reaction was assessed to be essential if the respective
prediction of the mutated network's maximal biomass
production was < 1% of the wildtype's biomass produc-
tion. The biomass objective function used in the analysis
was also taken as explained in [8]. Note that simulating

Table 2: Performance of machine learning based predictions on rich media condition

Machine Learning Machine Learning
(all 30 features) (25 optimized features)

true positives 168 174
true negatives 1078 1092
false positives 47 33
false negatives 63 57
sensitivity (recall) 72.73% 75.32%
specificity 95.82% 97.07%
positive predictive values (precision) 78.14% 84.06%
negative predictive values 94.48% 95.04%
overall accuracy 91.89% 93.36%
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rich media conditions is challenging, as it is difficult to
characterize the uptake rates for each compound of a rich
medium (Adam Feist, personal communication 2008).
Because of this, we compared the performances of our
approach with the FBA on glucose minimal media. 338
reactions were found to be essential in glucose minimal

medium according to the experimental criteria for gene
essentiality under glucose minimal media in the KEIO col-
lection [8,10,12]. 996 reactions were identified as non-
essential. The remaining reactions had no associated gene,
were exchange reactions, or could not clearly be identi-
fied. The FBA approach detected the essentiality of a reac-
tion under aerobic glucose minimal condition with an
accuracy of 86%, a sensitivity of 52% and a specificity of
98%. We performed our machine learning under glucose
minimal conditions with and without BFV (Biomass flux
value from FBA simulation) and found BFV to improve
the results (Table 3). With BFV, our approach yielded 90%
precision and 79% recall of experimental results, com-
pared with FBA results of 87% precision and 51% recall.
Results for all reactions are given in Table S2 [Additional
file 2].

Improving flux balance simulations
Figure 4 shows a comparison of our method and FBA by
categorizing the results according to the KEGG pathways
[24]. The essential reactions that were found by our
machine learning approach but not by the FBA were
mostly reactions in amino acid metabolism and lipid
metabolism. In amino acid metabolism, the tRNA trans-
ferases of almost all amino acids were found to be essen-
tial by the machine learning approach but not by FBA. We
improved FBA simulations by adding the corresponding
aminyl-tRNA reactions and their products to the biomass
objective function. This ensured that all tRNA transferases
would be predicted as essential by the FBA method. The
simulations subsequently gained better results by cor-
rectly predicting the essentiality of the aminyl-tRNA reac-
tions.

Using our approach as a means to validate the 
experimental knockout screen
Predicting a different outcome from experimental high
throughput screen (KEIO) may be due to either an error in

ROC-curve showing our prediction results with different weight factors for positive instancesFigure 2
ROC-curve showing our prediction results with dif-
ferent weight factors for positive instances. Each (blue) 
diamond shows the result for a different weight. From left to 
right, the weight was increased from 0.1 to 5.0, by a step size 
of 0.1. When the weight factors were higher than 1.0, the 
sensitivity remained constant. The dotted line was manually 
fitted.
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drug targets taken from the database Drugbank [23] (bot-
tom-right).

22
15

16

37

8

17

125

Machine Learning

KEIO (rich medium)
Drug targets

183

Table 3: Comparison of our machine learning method and Flux 
Balance Analyses on glucose minimal media condition

Performance ML\BFV1 ML2 FBA3

true positives 192 266 174
true negatives 932 968 971
false positives 64 28 25
false negatives 146 72 164
sensitivity 56.80% 78.70% 51.48%
specificity 93.57% 97.19% 97.49%
positive predictive values 75.00% 90.48% 87.44%
negative predictive values 86.46% 93.08% 85.55%
overall accuracy 84.26% 92.50% 85.83%

1machine learning without the feature BFV (biomass flux value from 
the FBA).
2machine learning including the feature BFV
3Flux Balance Analysis
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our algorithm, or an error within the experimental knock-
out screen. We examined our lists of false positives and
false negatives by two experimental set-ups. Our list of
false negatives contained 71 genes which our algorithm
predicted to be non-essential under glucose minimal con-
dition in contradiction to the outcome of the KEIO exper-
iment [10]. For 33 of them we obtained corresponding
knockout clones from the KEIO library (growing on rich
media), and grew them on M9 glucose medium. Indeed,
we were able to grow 9 out of 33 clones with good growth
rates (OD600 ≥ 0.2 after 48 hours) and 3 clones with rea-
sonable growth rates (OD600 between 0.07 and 0.2 after
48 hours). The complete list is given in Table S3 [in Addi-
tional file 1]. In turn, we also tested the list of false posi-
tives, for which our algorithm predicted 33 genes to be
essential, in contrast to the experimental high throughput
screen. We assumed that some of these genes weren't
knocked out correctly. Baba et al. (2006) provided a valid-
ity estimation for their clones. We compared our results to
their estimations and selected 6 genes, for which mutants
they estimated to be less than or equal to 37.5% correct.
For 5 out of these 6 genes (alaS, coaA, coaE, glyS and
hemE) PCR with specific primer pairs (Table S4 in Addi-
tional file 1) yielded two products with sizes correspond-
ing to wild-type and knockout alleles, respectively. This
indicated that the genes were not correctly knocked out
and the wild-type gene was still present. No PCR product
was observed for the ileS knockout. Additionally we tested

another 4 genes out of our list, for which mutations were
stated to be 100% correct by Baba et al. Indeed, for all of
those genes (aspC, epd, luxS, thiE) only the correct PCR
product corresponding to the knockout allele was
observed.

Conclusion
Defining drug targets is a challenging task. Many experi-
ments rely on a conditional essentiality screen of genes to
define the associated enzymes as possible drug targets.
Machine learning methods can help to validate this exper-
imental data. Our approach used the experimental knock-
out data for E. coli from KEIO [10]. The machine was
trained with this data and predicted quite accurately the
experimental outcomes. Most methods based on graphi-
cal networks aim at finding out weak points in the net-
work. We set up a machine learning system that integrates
features describing the network topology and functional
genomics properties in an elaborated way. By this we
gained two valuable insights. Firstly, we could see that the
topologic, genomic and transcriptomic data describing
the network attributes was sufficient for defining the
essentiality of a certain reaction. For pathogens it is often
hard to define the environmental parameters which are
complex and changeable as e.g. for intestinal infections.
Our approach can, in principle, handle all media condi-
tions, as shown for rich media conditions in this study.
Rich media conditions may better reflect the situation of
the pathogens in the host (like e.g. in the gut), in compar-
ison to minimal media conditions with clearly defined
carbon sources for which flux balance analyses can be well
adapted. A second benefit of our study is the experimental
validation and support for estimations of potential drug
targets. When regarding the intersection of our results and
the KEIO collection, we found 37 potential targets for
novel drugs, for 19 out of which we could find some
reported experimental evidence in the literature. An
advantage of machine learning approaches is to easily
change the stringency parameter, e.g. for increasing preci-
sion to avoid loosing potential candidates, the weight fac-
tor for the positive instances can be increased. We used
gene expression data from E. coli wild-type and single
knock out strains. The single knock outs were regulators
for respiration effecting a large number of genes and also
the treatment was rather unspecific (growth in oxygen rich
and deprived conditions). Hence, a large portion of net-
work pathways of the metabolic network was differen-
tially expressed [25]. Within the presented approach, data
of such pathway unspecific examinations suited well to let
the classifier learn which neighboring enzymes jointly
work together. Therefore, also multiple gene co-expres-
sion datasets for a variety of conditions may suit well for
our approach. However, it needs still to be investigated
which gene expression data suits best to optimize the per-
formance.

Comparison of our machine learning predictions, FBA and the experimental data, according to different pathwaysFigure 4
Comparison of our machine learning predictions, 
FBA and the experimental data, according to differ-
ent pathways. For each pathway of KEGG [24], the lowest 
bars represent the experimental result (KEIO), reactions are 
grouped into non-essential (left, blue) and essential (right, 
magenta). The mid and top bars show the prediction results 
of our machine learning approach and flux balance analyses, 
respectively. Larger differences between the machine learn-
ing prediction and the FBA were in the amino acid metabo-
lism and lipid metabolism.

0 50 100 150 200 250 300 350

Nonessential
Essential

Experiment

Non essential
Essential

FBA

Non essential
Essential

ML

Carbohydrate Metabolism

Lipid Metabolism

Nucleotide Metabolism

Amino Acid Metabolism

Metabolism of 
Cofactors and Vitamins

Others

Not in any pathway

Number of reactions
Page 9 of 11
(page number not for citation purposes)



BMC Systems Biology 2008, 2:67 http://www.biomedcentral.com/1752-0509/2/67
We have presented a system that could be broadly applied
to systems seeking potential drug targets for a variety of
substantial bacterial infections and other organisms. For
E. coli we benefited from a rich data pool including a well
elaborated metabolic network, a genome wide knock out
viability screen, the genome sequence and a feasible gene
expression dataset. Nowadays, the genomic sequence may
not be the limiting factor for most applications as a
remarkable number of genomes has been sequenced or
will be sequenced in the next future. As our approach uses
unspecific gene expression data also this can be obtained
from publically available resources or obtained by rather
straightforward experiments. Very well elaborated meta-
bolic networks have been assembled for some organisms
(e.g. B. subtilis [11], H. pylori [26], M. barkeri [27], M.
tuberculosis [28], S. cerevisiae [29]) to which we expect that
our method can be transferred without major difficulties.
Further networks can be received for a large amount of
organisms from existing excellent databases like BioCyc
[30] and Kegg [24]. It will be challenging to exploit these
networks with our method. Finally, until now, for our
approach the genome wide essentiality screen is still sub-
stantial and laborious. A methodological very challenging
task remains to employ our approach across different
organisms, by e.g. using the essentiality screen of one
organism to infer the information to another.
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