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Abstract
Background: The inverse problem of identifying the topology of biological networks from their
time series responses is a cornerstone challenge in systems biology. We tackle this challenge here
through the parameterization of S-system models. It was previously shown that parameter
identification can be performed as an optimization based on the decoupling of the differential S-
system equations, which results in a set of algebraic equations.

Results: A novel parameterization solution is proposed for the identification of S-system models
from time series when no information about the network topology is known. The method is based
on eigenvector optimization of a matrix formed from multiple regression equations of the
linearized decoupled S-system. Furthermore, the algorithm is extended to the optimization of
network topologies with constraints on metabolites and fluxes. These constraints rejoin the system
in cases where it had been fragmented by decoupling. We demonstrate with synthetic time series
why the algorithm can be expected to converge in most cases.

Conclusion: A procedure was developed that facilitates automated reverse engineering tasks for
biological networks using S-systems. The proposed method of eigenvector optimization constitutes
an advancement over S-system parameter identification from time series using a recent method
called Alternating Regression. The proposed method overcomes convergence issues encountered in
alternate regression by identifying nonlinear constraints that restrict the search space to
computationally feasible solutions. Because the parameter identification is still performed for each
metabolite separately, the modularity and linear time characteristics of the alternating regression
method are preserved. Simulation studies illustrate how the proposed algorithm identifies the
correct network topology out of a collection of models which all fit the dynamical time series
essentially equally well.
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Background
Metabolic and genetic time series have arisen as important
sources of information about biological processes. How-
ever, the quantitative characterization of these processes
from their temporal responses is not a trivial problem due
to the complexity of typical biological networks and the
multi-fold interdependencies among their components.
Any effective method for this task needs to be able to filter
out all possible quantitative information from observed
time series and convert it into mathematical features that
reliably characterize the true topology of the network, as
well as its regulation. Biochemical System Theory (BST)
[1-3] has been shown to provide a consistent mathemati-
cal framework for representing and analyzing biological
systems. The S-system variant of BST represents the bio-
logical network as a set of differential equations in the
general format

Here, Xi represents the concentration of metabolite i, αi
and βi are non-negative rate constants, and gij and hij are
real-valued kinetic orders for the production and degrada-
tion term, respectively. A considerable amount of infor-
mation about S-systems can be found in [1-5]. A major
advantage of this representation is that it uniquely maps
dynamical and topological information onto its parame-
ters; an illustration is given in Figure 1.

Several numerical techniques have been proposed in the
literature to tackle the inverse problem of S-system param-
eterization from time series; most of them use computa-
tionally expensive meta-heuristics such as Genetic
Algorithms (GA) [6-11], Simulated Annealing (SA) [12],
artificial neural networks [13], function approximation
[14,15], or global optimization methods [16]. Collec-
tively, these studies have shown that any direct parameter
estimations typically face grave problems. Major improve-
ments in efficiency are found when the derivatives at a
series of time points are replaced with estimated slopes [4-
6] and [17]. This step at once replaces the differential
equations with sets of algebraic equations and decouples
these sets so that the parameters for each metabolite can
be computed separately.

Differing from expensive direct estimation methodolo-
gies, alternating regression (AR) [18] was proposed as a
fast deterministic method for S-system parameter estima-
tion with low computational cost (see Methods Section).
Its superb efficiency is due to the reduction of the nonlin-
ear estimation problem into iterative steps of linear regres-
sion. Apparently its only disadvantage is the observation
that the method does not converge for some systems, and

that necessary and sufficient criteria for convergence are
not known. Thus, given a new system and new data, it is a
priori difficult to predict whether AR will or will not con-
verge. If it converges, it converges very fast.

In this report, we propose a new method, inspired by AR
and based on multiple linear regression and sequential
quadratic programming (SQP) optimization, to address
the S-system parameter identification problem when no
information about the network topology is known. The
algorithm accounts for the often observed quasi-redun-
dancy among S-system parameters, where errors in kinetic
orders can largely be compensated by adjustments in
other kinetic orders and rate constants. In contrast to AR,
the proposed method operates initially only on one term
(production or degradation), whose constant rate (α or β)
and kinetic orders (g's and h's) are optimized completely
before the complementary term is estimated. In many
cases, the method provides alternative candidate models
that fit the time series both in the decoupled and the fully
integrated forms.

Results
Synthetic time series
The proposed method was tested on synthetic time series
generated by reference test models [11,18,19] of 2, 4, and
5 state variables (Equations 2, 3, and 4 respectively). Each
system was simulated with different initial concentrations
of its variables in order to imitate different biological
stimulus-response experiments as described in [18]. All
specifications of the simulations with different initial con-
ditions can be found in Additional file 1.

In all three case studies, no knowledge about the pathway
was assumed and all parameters were considered freely
variable. Even so, the correct network topology was
extracted in all cases, with a mean error magnitude of 10-

5 for each numerically integrated state variable.

The 2-dimensional system

exhibits oscillatory behavior that is challenging for esti-
mation purposes, leading to difficulties of standard algo-
rithms in finding good solutions. The reason is that even
small shifts in the oscillation phase between the dynamics
of the estimated system and the true target system result in
significant cumulative errors. By contrast, the 4-dimen-
sional system
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(see Figure 1 for the corresponding pathway) is relatively
well behaved and will be used to identify problems that
are likely to emerge even for the inference of less compli-
cated dynamic models. The third system (Equation 4)
describes an artificial genetic network and has been used
as a benchmark [11,18,20] for S-system inference algo-
rithms.

The results of the algorithm on the 2, 4 and 5-dimensional
systems, presented in Additional file 1, demonstrate that
the proposed method retrieves the correct parameter val-
ues for noise-free time series. Three different data sets were
created for each test systems (Equations 2, 3 and 4) using
different initial conditions in the system's numerical inte-
gration (see Additional file 1). These three data sets
allowed us to assess the ability of the algorithm to deal
with different time series dynamics. Using each data set,
we performed 10 trials for each system's variables (Xi).
The runs differed in the random initial guess for β (see Ini-
tial parameter guesses section for the initialization of the
kinetic order values) which was chosen from the range
[0.1, 12]. The search space for kinetic orders was limited
to a reasonable range of [-2, 3], which is consistent with
collective experience in the field (see Chapter 5 in [4]). As
an example result, the experiment with the 5-dimensional
system performed on the first data set illustrates the suc-
cess rate of the algorithm: the exact parameter values were
found for all variables in all trails except for variable X5 in
one of the trials. The procedure is computationally effi-
cient, requiring 3 minutes to perform 40 optimizations
for the 4-dimensional system (10 optimizations for each
state variable corresponding to approximately 5 seconds
per case), on a personal computer with a 2.00 GHz proc-
essor and 1 GB RAM. Thanks to the numerical decoupling,
the complexity of the algorithm is of the order O(M*N)
where M is the number of state variables and N is the
number of data points used in the optimization. All exper-
iments were performed with 100 data points. For the 5-
dimensional system the proposed algorithm found the
correct parameter set, overcoming the problematic identi-
fication of the kinetic orders g32 and h32 of the state varia-
ble X3 presented by most algorithms in the literature. If a
stop criterion is defined as a value of 1e-12 for the sum of
the squared errors between the slopes of the optimized
system and the true slopes, the time required to identify
the system parameters for the 5-dimensional system was
23 sec on the machine described above. An experiment
with a 10-dimensional system was also performed and the
total time consumed was 75 sec (see Additional file 1).

Similar results were achieved with the optimization of the
2-dimensional system. Importantly, the correct parameter
set was found, although not with the same regularity as in
the 4- and 5-dimensional system optimizations. Issues
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Topology mappingFigure 1
Topology mapping. Example of network topology map-
ping onto kinetic orders in an S-system [17]. The exponents 
in the equations directly correspond to effects of metabolites 
on processes (flux arrows) in the pathway diagram. As an 
example, the flux out of X3 is affected by X3 as substrate and 
by X4 as activator. Both variables appear in the correspond-
ing term with their respective kinetic orders. The gray-scale 
in the g and h matrices reflects the magnitudes of the expo-
nents in the production and degradation terms of the S-sys-
tem, respectively, with higher values shown in darker hues.
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encountered in finding the correct solutions appeared to
be caused by a combination of different features of the
system, such as the position of the optimal point within
the feasible parameter space, which in the 5-variable case
is situated right on the border of the infeasible region
within the parameter space (see Figure 1 of the Additional
file 1), multiple local minima, as well as the particular
choice of initial parameter guesses. These peculiarities of
the algorithm and the problem itself lead to different
parameter values, although the errors of the decoupled
and integrated system are still small (typically about at the
order of 1e-5; for instance, see Tables 23, 29 and 30 in the
Additional file 1).

The proposed algorithm calculates the initial guesses for
the kinetic orders as close to zero as possible, given an ini-
tial β value (see section Initial parameter guesses). However,
in this specific case study, near-zero values of the kinetic
orders h11 and h12 for the constant rate β1 = 1 fall into the
infeasible parameter region, which complicates the
parameter optimization. For instance, the smallest feasi-

ble value for h12 is 0.8636. The proposed algorithm over-
comes this initial problem by adjusting itself and
subsequently returns correct solutions when the system is
rescaled in time [21]. This is most easily achieved by mul-
tiplying the alphas (α1 and α2) and betas (β1 and β2) with
a positive factor (see example in Additional file 1), which
increases the feasible parameter space. This step is, in fact,
equivalent to multiplying the slope vector by a positive
number. Thanks to the modularity of the decoupled sys-
tem, this scaling can be performed separately for each
state variable without affecting the kinetic order values.
Only the values of the rate constants are changed, but they
are easily recovered by dividing them by the positive
number used for scaling. It was observed that this strategy
often, but not always, enhances the algorithmic perform-
ance. It appears to improve performance most if the rate
constants have small values.

Initially, all experiments were performed with noise-free
time series, but in a second set of experiments, we added
noise. Because the proposed algorithm uses the decou-

Noisy time seriesFigure 2
Noisy time series. Noisy time series data (symbols) and results of the numerical integration of the estimated model (solid 
lines; cf. Eq. (3)). In spite of slight numerical discrepancies between the estimated parameters and their target values (see Addi-
tional file 1), the estimated model accurately predicts the dynamics of the target system, indicating quasi-redundancy [e.g., [27] 
and [25] ] or "sloppiness" [26] among the parameters.
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pled, algebraic form, a signal extraction procedure was
employed for the noisy data to provide smooth time series
and slopes [22]. The results show that combining the two
strategies (smoother and proposed algorithm) generate
accurate dynamical responses for the case studies used in
this report (Figure 2).

Error surfaces of decoupled S-systems

To explore the results of the proposed algorithm visually
and to investigate patterns of convergence, we performed
a grid search on the parameters of the 2-dimensional sys-
tem (Equation 2). Specifically, we searched a 100 × 100
grid where each point represented the kinetic orders h11

and h12 over the range [-2.5, 2.0]. Correspondingly, 100

time points for X1 and X2 and its correspondent slopes S1

and S2 were generated by numerical integration of the 2-

dimensional system (Equation 2) with X1(0) = 3 and

X2(0) = 1 as initial conditions. Methods described in a

later section were used on time series of X1 and X2 to cal-

culate the regression matrix L, and for each given initial

value of the rate constant β1 (uniformly spaced over the

interval [1,6]) and for each point of the grid, the error sur-
face for the variable X1 was constructed. The algorithm

started with the degradation term  for

the first grid point using a given value for β1 and the time

series points for X1 and X2. Subsequently, the production

vector (Vp1 = [log(α1) g11 g12]) was obtained from the

slope vector S1, the regression matrix L, and the degrada-

tion term DT1 in Equations (7)–(10). Once all parameter

values for variable X1 in the production and degradation

vectors were determined, the estimated slopes were calcu-

lated (  = PT1 - DT1) and the logarithm of the sum of the

squared errors between these slopes and the target solu-

tions was computed as . This

process was repeated for all points on the grid such that an

error surface resulted for each β1 value. In this manner, ten

surfaces were constructed using different β values; they are
shown superimposed in Figure 3.

The first observation is that most of the search region is
not feasible (unfilled X-Y space), even though there is a
priori no hint that solutions in the open range should not
converge. It turns out in retrospect that these are regions
where the argument of the logarithm on right side of
Equation 7 is negative, due to negative slope values. Also
worth noting is that for each β a similarly shaped surface
("bowl") was found, but that not all surfaces have the

same minimal point (Figures 3 and 4). This information
will be of critical importance in the discussion of the con-
vergence profile of the proposed method.

The same strategy was applied to noisy time series result-
ing in a new set of surfaces (data not shown). Gaussian
noise with 15% variance was added to the X1 and X2 time
series and a refined Whitaker's filter [22] was used to
smooth the data and estimate slopes.

The error surfaces obtained using noisy data (Figure 5)
present the same shapes as seen for the noise-free data
except that the error average is higher and points to a dif-
ferent global minimum, which however is essentially
indistinguishable in value from the local optima (see
Additional file 1 for details).

Convergence problems
It would be unreasonable to assume that the algorithm
converges to the global optimum under all imaginable
conditions and initial settings: no estimation algorithm
for nonlinear systems can – or should be expected to –
measure up to such high a standard. For instance, if the
ranges of initial guesses are changed or if the number of
initial guesses is reduced, the algorithm may converge to
an acceptable local minimum which, however, is not glo-
bal. This is not surprising, given the complicated nature of
the error surface of realistic systems and the fact that non-
linear systems often exhibit almost flat, banana-shaped or
ellipsoid valleys in which the minimum is centered [23-
27]. At this point, a comprehensive picture of potential
obstacles to convergence is not available. One prominent
reason for lacking or faulty convergence is that some prob-
lems are ill-posed, for instance, because of collinearity
between columns of the regression matrix L. This situation
occurs when two or more metabolites have similar
dynamics [25] or when at least one variable is essentially
constant and is therefore collinear with the first column of
the L matrix. In these and some other cases, the regression
matrix L has a high condition number, which the pro-
posed procedure flags. It might be possible to remedy
some of these ill-posed problems with a regularization
algorithm for multiple linear regression and through rede-
signing the algorithm with the regularized solution. It
seems advisable in any event to remove model redundan-
cies, for instance by pooling or eliminating collinear vari-
ables or merging essentially constant variables with the
rate constants of the term.

Parameter estimation of constrained networks
The proposed method was extended to address the param-
eter identification for systems with topological con-
straints. This extension allows the algorithm to account
for precursor-product relationships problems, which
mandate that the degradation term of the precursor is

DT X Xh h
1 1 1 2

11 12= β

Ŝ1

error S S= −( )∑log ( )1 1
2
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Error surfacesFigure 3
Error surfaces. a) Ten error surfaces associated with variable X1 of the 2-dimensional system were obtained using an exhaus-
tive grid search covering 10 different initial guesses. b) Zooming in shows the composite contour map (level sets) of the error 
surfaces.
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equivalent to the production term of the product [28].
Thus, instead of optimizing the parameters for each
metabolite separately, a set of terms is optimized simulta-
neously, consisting of one of the parameter vectors (pro-
duction or degradation vector) of each metabolite. As an
illustrative, simple example, consider a linear pathway
with feedback, where we have to account for constraints
between the production and degradation terms of subse-
quent metabolites (Figure 6). Specifically in the example
system, the efflux from X1 is identical to the influx into X2,
and the efflux from X2 is identical to the influx into X3.
Consequently, the degradation term of X1 is exactly the
same as the production term of X2, and the degradation
term of X2 must be the same as the production term of X3.
The amendment of the proposed method toward simulta-
neous estimation readily satisfies these types of con-
straints.

The extended algorithm was applied to the 3-dimensional
linear pathway system in Figure 6, and some of the results
are shown in Additional file 1. The algorithm found the
correct parameter set, and all 10 optimizations, in which
the algorithm now performs a single, combined optimiza-
tion for all variables simultaneously, thereby accounting

for constraints, were completed in 37 sec on a 2.00 GHz
processor with 1 GB RAM.

Graphical user interface
An open source MATLAB toolbox and a stand-alone com-
piled Graphical User Interface (GUI) application were
developed as an exploratory tool (see Section Availability
and requirements). The application was developed as a
modular extension of our previous work and constitutes a
critical component within our long-term effort of advanc-
ing a data processing pipeline for S-system estimation
from metabolomic time series [13,22]. A snapshot of the
GUI is shown in Figure 7. All computational results and
graphics described in this report can be reproduced using
this application.

Discussion
There are many reasons why it may be desirable to reverse
engineer a biological network without making assump-
tions about the underlying processes. The most obvious
reason is that no reliable information may be available
about the processes. Another situation occurs when sev-
eral network topologies are a priori possible and the
reverse approach is employed to prioritize alternative

Multiple minimaFigure 4
Multiple minima. Z-Y projection of the error surfaces in Figure 3a. Different minima are found for different β values.
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hypotheses. The algorithm proposed here is an extension
of Alternating Regression (AR; [18]) that in many cases
shows improved convergence behavior.

The proposed algorithm was exhaustively tested on
diverse time series (see Text above and Additional File 1).
In all of these tests, the convergence followed the same
pattern: the error slowly decreased during the first few iter-
ations and then suddenly dropped to a significant lower

plateau, from where it gradually decreased again. This pat-
tern repeated until one of the stop conditions (maximal
number of iterations, minimal gradient value or minimal
cost function value) was reached. The error drop points
matched with significant changes in the beta gradient and
appear to correspond to transitions to a "bowl" with a
lower error surface (cf. Figures 3 and 5). As shown in Fig-
ures 3b and 5, most "bowls" have different minimal
points, corresponding to good, yet local minima. Because

Error surfaces from noisy time seriesFigure 5
Error surfaces from noisy time series. Ten error surfaces of the variable X1 of the 2-dimensional system obtained from 
noisy time series after signal extraction and slope estimation.

Linear system topologyFigure 6
Linear system topology. Linear pathway with precursor-product constraints.
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the proposed algorithm is computationally very efficient,
it allows the exploration of the parameter space in a rea-
sonable amount of time (seconds to minutes). Such an
exploration with new initial β values is recommended, if
very precise solutions or alternative parameter sets are
needed. Because alternative parameter combinations may
correspond to different topological and regulatory struc-
tures [4], estimations with different initial values in fact
constitute explorations of the structure and functionality
of the biological space in which the pathway operates.

Conclusion
S-systems present a unique balance between proven bio-
logical relevance and validity on one hand, and mathe-
matical convenience and tractability on the other. For this
reason, the recent years have seen numerous methods for
matching S-system models to measured biological time
series data. In the relatively simpler scenario of this type,
the topology and regulatory structure of the biological sys-
tem is known, and the extraction of information from the
data constitutes a parameter estimation task. In the more
difficult situation, at least some of the structure is

unknown, and in the extreme situation no information
about the topology of the interactions between variables
is available. In this article we propose a new algorithm
that efficaciously identifies the correct topology of a sys-
tem from time series. The only true assumptions made are
that all important variables are accounted for and that the
S-system model is capable of modeling the data. The first
assumption is presently unavoidable, at least in the gener-
ality presented above. The second assumption has been
found to be true in very many cases, as a rich body of pub-
lications on S-systems demonstrates. The proposed algo-
rithm was conceived as a critical piece of an emerging data
processing "pipeline" that will eventually accept time
series and other data characterizing biological pathways
and more or less automatically propose topological and
regulatory structures that are consistent with the input
data. This algorithm will be a valuable tool for analysis
and hypothesis generation in systems biology.

Software applicationFigure 7
Software application. Snapshot of the graphical user interface provided as a free stand-alone application.
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Methods
Eigenvector optimization

The proposed method was inspired by Alternating Regres-
sion (AR [18]) and is based on the substitution of differ-
entials with estimated slopes [4,5,17] and the
minimization of the differences between two vectors
obtained from multiple linear regression equations. In
contrast to AR, the new algorithm estimates one term per
equation with high accuracy and computes the other term
through linear regression ensuring that the new term will
fall into the feasible space. Specifically, the task is initially
posed in relation to one of the two terms of an S-system
equation with M species (e.g., metabolites), either the pro-

duction term vector  or the degra-

dation term vector , which are

both defined for each metabolite i at a series of N time
points tn. Let Si(tn) denote the estimated slope of metabo-

lite i at time tn. In simplified notation, Si(tn) is given by

Si(tn) = PTi(tn) - DTi(tn), n = 1, 2, �,N (6)

Because PTi must be positive, Equation 6 can be rewritten
as

log(PTi) = log(Si + DTi), (7)

or in matrix form as

L·Vpi = yi, (8)

where the production parameter vector is given as Vpi =
[log αi gi1 gi2 � giM], yi = log(Si + DTi), and the regression
matrix L is

As is standard with multiple linear regression models, the
production parameter vector Vpi can be obtained as

Vpi = (LTL)-1 LTyi, (10)

as long as the inverse exists. Substituting this result in
Equation 8 directly yields

L(LTL)-1 LTyi = yi. (11)

PT t X ti n i j n
g
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.





















(9)

FlowchartFigure 8
Flowchart. Flowchart of the proposed algorithm. To per-
form the optimization process, the algorithm requires only 
the time series set and an initial β value as input.
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Recall that vector yi is a function of the degradation
parameters (β i and hij), which thus must satisfy Equation
11. Specifically, yi must be an eigenvector of the matrix W
= L(LTL)-1LT with an eigenvalue equalling 1.

We used several standard algorithms to calculate the
eigenvector of the matrix W directly, but none of them
returned a satisfactory result. The presumed reason is that
any vector which belongs to the eigenspace of W corre-
sponding to eigenvalue 1 satisfies the Equation 11. We
therefore forced the eigenvector yi to be in the form
log(Si+DTi) and reformulated the task as a minimization
problem for the logarithm of the squared residuals
between the right and left side hands in Equation 11 and
defined this problem in matrix form with the cost func-
tion

where . The gradients of this function with

respect to the degradation parameters are given by Equa-
tions 13 and 14:

Here, the symbol ο represents the Hadamard product
between vectors [29] and φ is the logarithm of the argu-
ment of the right hand side of the Equation 12. Analogous
gradient equations are obtained for the production terms.
The algorithm avoids unfeasible solutions by satisfying
the feasibility constraints

We used the fmincon routine in MATLAB® (MathWorks)
with built-in Sequential Quadratic Programming to exe-
cute the cost function constrained minimization.

Initial parameters guesses
Like all numerical optimization algorithms, the proposed
method requires initial guesses. Satisfying the constraints
in Equation 15, the proposed algorithm calculates initial
guesses for the kinetic order hij, given a user-supplied

value βi; specifically, hij and a small buffer value ε are cho-
sen such that

where  represents all negative slope values from the

time series of Xi. A simple linear regression step in loga-

rithmic space thus suffices to determine admissible initial
guesses for the kinetic orders hij. In this fashion, for a given

βi, small values of kinetic orders hij are provided to the

optimization algorithm. As a technical note, it is easier to
keep a null parameter value than to bring it to zero during
the optimization. If the slope vector contains no negative

values, the procedure is performed without ε. A flowchart
of the proposed algorithm is shown in Figure 8.

Refining solutions
Differently parameterized S-systems can exhibit quite sim-
ilar temporal dynamics. This behavior is due the fact that
S-systems are composed of production and degradation
terms that may compensate for each other through differ-
ent kinetic orders and constant rates that ultimately pro-
duce very similar time courses. As one consequence, it is
quite common that optimization schemes identify non-
zero values for parameters that should in truth be zero.
Moreover, it is unlikely that any algorithm based on gra-
dients will obtain parameters values exactly equal to zero.
For these reasons, our algorithm automatically checks
parameter values and forces kinetics orders below a quite
arbitrary threshold of (0.009) to be zero; a new optimiza-
tion process is the initiated in which the parameter is con-
strained to be zero.

Extension to constrained topologies
To address linear pathway sections, constraints are
imposed in accordance with the structure of the system
when the parameter optimization is performed. For
instance, for the linear system with precursor-product
relationships (Figure 6), the optimization is performed
with the degradation term of the precursor metabolite
forced to be equal to the production terms of the product.
In such a case, the Equation 11 is formulated for each state
variable

F y y y yi i
T

i i= −( ) −( )( )log , (12)
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and the sum of the equations returns the eigenvector
problem

A cost function similar to Equation 12 can be formulated
using the Equation 18, and the same optimization proce-
dure is used. To force flux conservation, the following
constraints were imposed on the optimization algorithm

to impose

DT1 = PT2, (20)

and the degradation term of X2 was forced to be equal the
production term of X3

Applying logarithms on both sides of the Equation 21 and
solving the equation by multiple linear regression, the
final constraints are found as

and

where C = (LTL)-1LT. The constraints can be rewritten in a
general form as

and

Analogous optimization routines were used for other con-
straints.

Availability and requirements
The implementation of the algorithm described in this
report is made publicly (GNU GPL) available with open
source as Matlab m-code (MathWorks Inc) at http://
code.google.com/p/s-system-inference/. For the conven-
ience of those without a Mathworks license we have also
compiled the code as a stand-alone application made
publicly available at the same site, or as a module ("Signal
Extraction Toolbox") of the code distribution infrastruc-
ture of the Bioinformatics Station resource http://bioin
formaticstation.org.
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