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Abstract
Background: Compendia of gene expression profiles under chemical and genetic perturbations
constitute an invaluable resource from a systems biology perspective. However, the perturbational
nature of such data imposes specific challenges on the computational methods used to analyze
them. In particular, traditional clustering algorithms have difficulties in handling one of the
prominent features of perturbational compendia, namely partial coexpression relationships
between genes. Biclustering methods on the other hand are specifically designed to capture such
partial coexpression patterns, but they show a variety of other drawbacks. For instance, some
biclustering methods are less suited to identify overlapping biclusters, while others generate highly
redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of
perturbational expression data analysis: the identification of differentially expressed genes.

Results: We introduce a novel method, called ENIGMA, that addresses some of these issues.
ENIGMA leverages differential expression analysis results to extract expression modules from
perturbational gene expression data. The core parameters of the ENIGMA clustering procedure
are automatically optimized to reduce the redundancy between modules. In contrast to the
biclusters produced by most other methods, ENIGMA modules may show internal substructure,
i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of
these (often functionally) related patterns in one module greatly aids in the biological interpretation
of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a
quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping
clusters and that can be modified to take redundancy between clusters into account. Finally, we
apply ENIGMA to the Rosetta compendium of expression profiles for Saccharomyces cerevisiae and
we analyze one pheromone response-related module in more detail, demonstrating the potential
of ENIGMA to generate detailed predictions.

Conclusion: It is increasingly recognized that perturbational expression compendia are essential
to identify the gene networks underlying cellular function, and efforts to build these for different
organisms are currently underway. We show that ENIGMA constitutes a valuable addition to the
repertoire of methods to analyze such data.
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Background
Over the last decade, the availability of fully sequenced
genomes and the development of high-throughput tech-
nologies such as DNA microarray-based transcript profil-
ing have fuelled an exponential increase in the volume of
functional genomics data. This has led to a renewed inter-
est in the study of molecular biology at the system level [1-
3].

The central paradigm in systems theory is that one can
learn about a system by perturbing it and measuring the
response. This principle also applies to biological systems.
Since mRNA levels can nowadays easily be measured on a
genome-wide scale, expression profiling has become a
first method of choice for assessing the molecular
response to experimental perturbation (the molecular
phenotype). Considerable efforts are put into creating
compendia of expression profiles under genetic, chemical
or environmental perturbations [4-6] or in different tis-
sues [5,7,8]. Such data compendia basically constitute a
series of snapshots of expression states under a variety of
conditions, and they contain a wealth of information con-
cerning the underlying transcriptional network structure
of an organism. However, devising methods to efficiently
and reliably extract that information is still a challenging
task.

Clustering of gene expression data allows the inference of
functional correlations between genes through what was
dubbed the 'guilt-by-association' principle [9]. A classical
clustering process consists of two steps [10]. First, a matrix
of distances between expression profiles is calculated
using a distance or similarity measure, such as Pearson's
centered correlation coefficient (PCC). Based on this dis-
tance matrix, the actual clustering algorithm, for instance
average linkage hierarchical clustering, groups similar
profiles together. Traditional clustering methods are well
suited for analyzing time-series expression data, but they
fall short when applied to perturbational data, because
the underlying similarity measures, such as PCC, prima-
rily capture global correlation tendencies. However, in
compendia of perturbed expression profiles, genes do not
necessarily show similar behavior under all experimental
conditions: they may be coexpressed under some condi-
tions and follow different expression regimes under other
conditions. One of the consequences is that genes may be
coexpressed with multiple expression modules depending
on the conditions, or in other words, expression modules
may overlap.

These observations stimulated the development of alter-
native clustering strategies. The process of detecting sub-
sets of genes that exhibit similar expression behavior
across a subset of conditions is known as biclustering. Sev-
eral biclustering strategies exist today, each using its own

heuristic approach to tackle this complex problem ([11]
and references therein). Some biclustering methods use a
greedy iterative search strategy to uncover biclusters, pro-
gressively subdividing, or adding and removing rows and
columns from the biclusters obtained in a previous itera-
tion in order to maximize a local score function [12-15].
Others use linear algebra [16] or adopt a graph-theoretic
approach to biclustering [17,18]. Yet other methods iden-
tify biclusters by proposing a statistical model and esti-
mating the distribution parameters that minimize a
certain model fit criterion [19-25]. A feature that most
biclustering methods share is that they do not explicitly
define similarity measures on the global space of expres-
sion profiles, but rely on the emergent properties of
groups of genes and conditions in order to identify signif-
icant subpatterns in the data.

Evidently, a wide variety of biclustering algorithms exist,
each of them having their own strengths and weaknesses.
For example, some of these methods are intrinsically less
suited to find overlap between biclusters because they
mask previously found biclusters with random noise
[12,22], or because they partition the data [16,21,24].
Others require extensive parameter tweaking, require the
user to specify the desired number of biclusters in advance
or generate very small or large (amounts of) biclusters or
highly redundant biclusters (see e.g. comparison in [23]).
Some have no publicly available implementation or are
rather cumbersome to use, and most of them, notable
exceptions being SAMBA/EXPANDER [17,26], Genomica
[21] and cMonkey [23], do not integrate or overlay other
types of biological data, hampering their use as biological
discovery tools.

Also, to our knowledge, none of the existing biclustering
methods uses the variational information in replicated
expression experiments. This information is routinely and
successfully used to detect genes that are differentially
expressed under a given perturbation [27]. The main rea-
son why biclustering methods do not use differential
expression information is that they do not specifically
focus on the analysis of perturbational data. Discretiza-
tion-based biclustering methods such as SAMBA [17] and
BiMax [18] could probably easily be modified to assess
up- and downregulation of gene expression based on p-
values for differential expression. In their current imple-
mentation, however, these methods use rather arbitrary
log-ratio or percentage cutoffs for this purpose.

In this study, we present a novel method, called ENIGMA,
that addresses some of these issues. Our goal was to build
a method that: (i) leverages differential expression analy-
sis results to extract co-differential expression networks
and expression modules from perturbational gene expres-
sion data, (ii) is able to detect significant partial coexpres-
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sion relationships between genes and overlap between
modules, (iii) depends on parameters that can be auto-
matically optimized or set on reasonably objective
grounds. (iv) produces a realistic amount of modules, and
(v) visually integrates the expression modules with other
data types such as Gene Ontology (GO) information [28],
transcription factor (TF) binding data, protein and genetic
interactions, in order to facilitate the biological interpreta-
tion of the results. Below, we outline the ENIGMA algo-
rithm, test our methodology on artificial expression data
and compare its performance to other methods. We also
apply ENIGMA to a perturbational microarray compen-
dium for budding yeast [4] in order to assess its potential
to generate testable hypotheses on real biological data.

Results
Algorithm
A global overview of the methodology is given in Figure 1.
Briefly, ENIGMA takes as input a set of perturbational
expression data, externally calculated p-values for differ-
ential expression (e.g. using the limma package in Biocon-
ductor [29]) and other data types if available. ENIGMA
uses a novel combinatorial statistic to assess which pairs

of genes are significantly co-differentially expressed
(henceforth abbreviated as coexpressed for the purpose of
readability). The resulting coexpression p-values are cor-
rected for multiple testing and translated to edges in a
coexpression network, which is clustered into expression
modules (i.e. groups of significantly co-differentially
expressed genes) using a graph-based clustering algorithm
inspired on the MCODE algorithm [30]. The clustering
procedure depends on two parameters that control the
density of individual modules and the overlap between
modules. The main reason why we chose a two-tier clus-
tering approach (data → coexpression network → cluster-
ing) is that it allows simulated annealing-based
optimization of the clustering parameters to obtain opti-
mal coverage of the coexpression network, in terms of
module overlap and redundancy. The graph clustering
method we use is very fast, which allows the parameters to
be optimized in a reasonable amount of time. In the post-
processing phase, ENIGMA determines relevant condition
sets for each module, visualizes their substructure and
overlap with other modules, screens the modules for
enriched GO categories, suggests potential regulators for
the modules based on regulator-module coexpression

Global methodology overviewFigure 1
Global methodology overview. To the right is a figure of module 28, a module enriched in mating-related genes learned 
from the Rosetta dataset [4]. See Figure 4 for interpretation guidelines.
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based on p-values for differential expression

- Calculation of co-differential expression p-values 
- Multiple testing correction of p-values
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- Graph-based identification of expression modules
- Simulated annealing-based optimization of
  clustering parameters

- Condition set calculation
- Visualization of module substructure
- Find potential regulators
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links and enrichment of TF binding sites, and overlays
protein and genetic interaction data.

Combinatorial statistic
Consider the expression profiles of two genes A and B
under N perturbations (see Figure 1). Each gene is repre-
sented by a profile of N fields. The gene expression values
are discretized into three categories (upregulated, down-
regulated, unchanged) based on their differential expres-
sion p-value. If the gene is significantly upregulated in a
given experiment (by default if p < 0.01), the correspond-
ing field is labeled blue. Experiments in which the gene is
significantly downregulated are similarly labeled yellow,
and the remaining fields are labeled black. Let us now
assume that the profiles of A and B contain ax and bx blue
fields respectively, as well as ay and by yellow fields, and
that they have x blue and y yellow fields in common. We
want to assess whether this overlap is statistically signifi-
cant. If the response of the genes A and B to the perturba-
tions were uncorrelated (null hypothesis), the blue and
yellow fields would be independently distributed on both
profiles. Under this hypothesis, the probability that the
profiles overlap on exactly x blue and y yellow positions is
given by the following recursive formula:

The probability of observing an overlap of at least x blue
and y yellow fields by chance is then expressed by the
cumulative distribution:

Equation 1 can be understood by assuming that profile A
is given, and that we randomly distribute bx blue and by
yellow positions on profile B. The denominator of the first
term then represents the total number of possible profiles
B. The numerator represents the combinations in which x
blue and y yellow matching positions are selected, and the
residual positions are chosen at random. However, in this
manner, a number of combinations are selected while
having more than exactly x blue and/or y yellow matching
positions.

Moreover, combinations with x' > x blue and/or y' > y yel-
low matching positions are counted C(x', x)·C(y', y)
times, hence the second term (see Additional file 1).

Although the probabilistic question formulated above can
be cast in terms of contingency tables, the hypothesis
tested by our statistic is different from that tested by stand-

ard contingency table analysis methods such as the χ2 test.
For example, situations in which a large amount of blue
(upregulated) fields in profile A are perfectly mapped
onto the black fields (up nor down) in profile B would
yield a significant χ2 p-value, whereas they would not yield
a significant p-value using equation 2. Our statistic only
considers mappings of up- and down-regulation of the
expression of a gene to up- or down-regulation of another
gene to be meaningful for assessing coregulation, a
premise which is motivated by the perturbational nature
of the data we aim to analyze. Black fields are considered
less informative from the perspective of coregulation.

Multiple testing correction of coexpression p-values
In our probabilistic setup, each comparison of two pro-
files can be considered an individual test. For N genes,
N(N - 1)/2 tests are performed to fish for co-differential
expression relationships. Consequently, the obtained p-
values have to be adjusted in order to control the type I
error rate. The raw p-values are corrected for multiple test-
ing with the Benjamini & Hochberg procedure, which
controls the False Discovery Rate (FDR) [31].

Graph-based clustering
The set of significant coexpression relationships at a cer-
tain FDR threshold (by default FDR = 0.05) is translated
to a network, with nodes and edges representing genes
and significant coexpression relationships, respectively.
ENIGMA identifies coexpression modules from this net-
work using a graph clustering technique inspired by the
MCODE algorithm [30]. To identify potential module
seeds, all nodes v are weighted based on the density of the
highest k-core of the node neighborhood Nv, denoted as
the kmax-core of v (a k-core of a graph is a maximal sub-
graph in which each node has at least degree k). Analo-
gous to Bader and Hogue [30], the core-clustering
coefficient Ccore,v is defined as the density of the kmax-core
of v, and the weight wv = Ccore,v·kmax,v.

The kmax-core of the node with the highest weight is taken
as the first module seed. This module seed then grows by
accreting nodes on which it exerts a pull above a certain
threshold ν2. The pull of a module with seed S on a node
v outside the module is defined as |Nv ∩ S|/|S|. The next
module is then initiated by taking the kmax-core of the
node with the highest weight in the remaining graph. An
additional constraint is set by requiring that the overlap
between the new seed S and any existing module M does
not exceed ν1·min(|S|,|M|). While the threshold ν2 con-
trols the size and density of individual modules, ν1 con-
trols the spacing or overlap between modules. Both
parameters are optimized automatically.
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Clustering parameter optimization
In order to optimize the clustering parameters, the quality
of the clustering for a given (ν1, ν2) is assessed by compar-
ing the known input coexpression network (i.e. the net-
work obtained in the first phase of the ENIGMA
algorithm) with the output coexpression network inferred
by the modules. The latter is constructed by translating the
modules to fully connected components in the output
network (see Additional file 1 Figure S1 A). If we consider
true/false positives (tp resp. fp) to be coexpression edges
inferred by the clustering that are present/absent in the
input coexpression network, and false negatives (fn) as
edges present in the input network that are not inferred by
the clustering, we can define the precision P' = tp/(tp + fp)
and the recall R' = tp/(tp + fn) of the clustering result.
ENIGMA uses the F'-measure, i.e. the harmonic mean of
recall (R') and precision (P'), F' = 2P'R'/(P' + R'), as a
measure for the quality of the clustering. We use the nota-
tion P', R', F' instead of the more commonly used P, R, F
in order to distinguish between two different flavours of
the F-measure used in this study for different purposes. In
contrast to the regular F-measure (Additional file 1 Figure
S1 C), the F'-measure penalizes overpredicted edges in
order to avoid unnecessary overlap between the expres-
sion modules: an edge (A, B) that is inferred multiple
times from the clustering, because the genes A and B
belongs to the intersection of multiple (say x) modules, is
counted as 1 tp and x - 1 fp. This is equivalent to drawing
x edges between the genes A and B in the output coexpres-
sion network. Since there is only one edge in the input
network, the x - 1 remaining edges can be considered false.
This penalization strategy has the intuitively pleasing
property of not affecting the recall, but lowering the preci-
sion of the clustering result when the amount of edges
'explained' by multiple modules increases.

The parameters ν1 and ν2 are now optimized by Monte-
Carlo Simulated Annealing (MCSA) [32,33] using F' as
the optimization criterion. Starting from an random ini-
tial guess for the parameters (ν1, ν2), random steps are
taken in parameter space. A step is accepted if

rand(1) <eΔF'/T

with rand(1) a random number drawn uniformly from
the interval [0,1], ΔF' the change in F'-measure and T the
simulated annealing parameter or 'temperature', which
gradually decreases during the course of the optimization
according to an exponential scheme Ti = rcTi-1, with rc the
cooling rate. ENIGMA uses a two-stage MCSA procedure.
In the first stage, a rough MCSA search of the clustering
parameter space is performed in order to identify the most
interesting parameter region (default MCSA settings: Tbegin
= 0.1, Tend = 0.001, rc = 0.99, parameter step size = 0.05).
In the second stage, a finer MCSA search is performed

starting from the optimum obtained in the first stage
(default MCSA settings: Tbegin = 0.01, Tend = 0.0001, rc =
0.995, parameter step size = 0.01). At the end of each
stage, an additional gradient descent is performed toward
the nearest local optimum of F'. By default, ENIGMA per-
forms 3 MCSA runs, starting from randomly chosen (ν1,
ν2). The convergence of the solutions of multiple runs can
be used as a check on the adequacy of the MCSA parame-
ter settings.

Postprocessing of modules
For each gene module, ENIGMA determines a condition
set by selecting those conditions that show enrichment of
up- or downregulated genes in the module (hypergeomet-
ric test, default FDR = 0.05). Thus, for a given module, the
condition set contains the experimental conditions that
elicit a significant and specific response in the module (as
compared to the overall response) and, by consequence,
have been most influential in shaping the module. The
resulting 'bicluster' does not necessarily have a uniform
expression pattern over all genes, but may show subpat-
terns for some genes under certain conditions, possibly
indicating involvement in other expression modules.
These subpatterns are visualized by hierarchically cluster-
ing the module's expression data in both dimensions,
using the cosine correlation coefficient (cosθ) as a similar-
ity measure. The clustering tree can optionally be sepa-
rated into leafs to make the subdivision more clear
(default threshold cosθ = 0.65). Although conditions that
show differential patterning within one module might
appear to be irrelevant for the module as a whole, they are
important for at least part of the module and may provide
insight into inter-module connections or further substruc-
ture within the module.

In an attempt to provide the user with clues on how the
expression modules are regulated, ENIGMA searches for
'regulators' that are significantly more connected to a
module, through positive or negative coexpression edges,
than expected at random (hypergeometric test, default
FDR = 0.05). Potential regulators are selected from a user-
defined list or a user-defined set of GO classes. When
chromatin immunoprecipitation (ChIP) or TF motif data
are available, ENIGMA also screens the modules for
enriched TF binding sites (hypergeometric test, default
FDR = 0.05). The expression profiles of significantly coex-
pressed or binding regulators are visualized on top of the
modules. Significantly enriched GO terms for both the
gene and condition sets of the modules are determined
using the BiNGO [34] software, which is incorporated in
ENIGMA (hypergeometric test, default FDR = 0.05).
Finally, ENIGMA visually maps the available protein
interaction data and genetic interaction data on the mod-
ules.
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Testing on artificial data
Generating artificial expression data

To assess the performance of our method and compare
ENIGMA to other methods, we performed tests on artifi-
cial gene expression data. We generated two types of arti-
ficial expression data, namely expression data containing
overlapping biclusters (modular data) and expression
data containing partially coexpressed genes but no biclus-
ters (non-modular data). In both cases, we built 10
expression datasets of 1000 genes by 100 experiments (in
log2 ratio format). For each dataset, artificial background

expression data were randomly sampled from a normal

distribution with mean μ = 0 and variance σ2 = 0.16. For
the modular datasets, we implanted 20 biclusters in this
background, each encompassing between 1–5% of all
genes and 10–50% of all conditions. Bicluster sizes, mem-
ber genes and conditions are chosen at random, with the
restriction that at most 30% of the genes and 50% of the
conditions overlap between any 2 biclusters (percentages
relative to the smallest of the 2 biclusters). Except for a
noise component (see further), all genes in a bicluster
share the same expression profile over the bicluster condi-
tions. However, a bicluster can be partially overwritten by
other biclusters. The bicluster profiles are sampled from a
bimodal distribution consisting of 2 normal modes with

means μ1 = -1 (for down-regulated expression) and μ2 = 1

(for up-regulated expression) and variances

. The expression profiles of individual

genes in a bicluster are noisified by adding normally dis-

tributed noise (μn = 0 and σn = 0.2|x| with |x| the ampli-

tude of the log ratio expression of the gene in the given
condition). The variances, bicluster size and overlap
parameters are chosen so that the overall distribution of
the simulated log ratio expression values mimicks the dis-
tribution of log ratio expression values in the Rosetta com-
pendium [4] up to a scale factor (see Additional file 1
Figure S2). Note that, apart from the distribution of
expression ratios, the structure of these toy datasets does
not necessarily bear any resemblance to real biological
data.

For the non-modular datasets, we implanted 500 pairs of
partially coexpressed genes (co-differentially expressed
under 10–50% of all conditions) in the background. The
expression profiles are constructed as described above.
The resulting expression value distribution again mimicks
the Rosetta distribution (see Additional file 1 Figure S2).

Unlike for real data (see below), we used log2 ratio thresh-
olds to discretize the expression values of the artificial

datasets, because the generation of meaningful artificial
differential expression p-values proved to merit further
study in its own right. Therefore, the artificial data cannot
be used to assess the advantage of including variational
information in ENIGMA's discretization step (instead, we
performed a qualitative comparison of p-value and log-
ratio based discretization on real data, see below). On the
other hand, we can still compare the performance of
ENIGMA with other methods that do not use variational
information. We used a log2 ratio threshold of 1 for upreg-
ulation and -1 for downregulation, corresponding to the
means of the distributions used to generate the bicluster
profiles. In other words, half of the datapoints in the
biclusters are presumed not to be significantly over- or
underexpressed.

Performance of ENIGMA on artificial data and comparison with 
other methods
The performance of ENIGMA on these toy datasets was
compared with that of two commonly used similarity
measures, namely PCC and the χ2-statistic, and two estab-
lished biclustering methods, SAMBA [17] and ISA [14,35].
PCC was chosen as a representative of the global similarity
measures used in traditional clustering algorithms, while
we included the χ2-statistic because of its relation to the
combinatorial statistic used by ENIGMA (see Algorithm
section). The selection of biclustering methods was based
on the following criteria: (i) the methods should be non-
partitioning in nature, (ii) they should have the capacity
to generate overlapping biclusters, (iii) a suitable imple-
mentation should be publicly available, and (iv) they
should produce a reasonable amount of biclusters (in the
order of 10–100) on the modular toy datasets. We used
the version of SAMBA [17] incorporated in the
EXPANDER 3.0 package [26], and the implementation of
ISA [35] available as part of the biclustering tool BicAT
[36], both with default parameter settings. The ISA trajec-
tories from randomly chosen starting points (default 100)
converge to a limited number of 'fixed point' biclusters.
To prune nearly identical modules, we merged ISA biclus-
ters that overlap for more than 80%.

The clustering performance of all methods is only assessed
in the gene dimension. Standard internal criteria for par-
titional clustering performance, such as the silhouette
width or Dunn's index [37,38], cannot be used to assess
the performance of algorithms that generate overlapping
clusters. Instead, we use the F-measure and introduce a
derivative, the F'-measure (also used in the ENIGMA clus-
tering optimization procedure described above), to com-
pare the performance of different clustering methods on
artificial datasets. In both cases, the coexpression network
generated by a method (either directly or by translating
the clusters to network components) is compared to the
artificial input coexpression network in terms of true and

σ σ1
2

2
2 0 49= = .
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false positive edges and false negative edges, from which
the different flavors of the F-measure are calculated (see
Additional file 1 Figure S1). The difference between the F-
measure and the F'-measure is that the F-measure does
not take into account the multiplicity of the inferred
edges. In other words, the F'-measure penalizes overpre-
dicted (redundant) edges, whereas the F-measure does
not. This entails that the F'-measure is more useful to
compare methods that generate overlapping clusters,
whereas the F-measure can be used more generally to
compare methods that generate both overlapping or non-
overlapping clusters or pair-wise coexpression networks.

The performance of ENIGMA is tested on two levels by
assessing the overlap between the artificial input correla-
tion network and (i) the network of significant correla-
tions obtained in the first step of the ENIGMA algorithm
(before clustering, referred to as ENIGMA-N); (ii) the
modules inferred by ENIGMA (ENIGMA-M). The output
networks for ENIGMA-M and the biclustering methods
SAMBA and ISA are obtained by converting the obtained
modules/biclusters to fully connected network compo-
nents. The χ2 network is constructed by translating signif-
icant χ2 correlation p-values between the discretized
expression profiles to edges in the output network. We
used the same discretization threshold (|log2 ratio| = 1)
and FDR level (0.05) for the χ2 and ENIGMA methods.
The performance of PCC was measured for different

thresholds (for each threshold t, gene pairs with PCC > t
define an edge in the network).

Using the F-measure, ENIGMA outperforms all other
methods on the modular artificial data (see Figure 2A and
Additional file 1 Tables S1 and S2). The performance of
ENIGMA-M was consistently higher than the χ2 perform-
ance (ΔF = 0.11 on average) and the optimal PCC per-
formance (at a PCC threshold of 0.20–0.30 depending on
the dataset; ΔF = 0.07 on average). The global similarity
measure PCC appears to perform surprisingly well. How-
ever, the performance of PCC critically depends on the
choice of the PCC threshold, and determining the optimal
PCC threshold on real data is problematic. In contrast,
ENIGMA has the advantage of having an easily tunable
significance threshold: the False Discovery Rate (FDR)
level. To illustrate this, we plotted the performance curve
of ENIGMA for different non-corrected p-value thresholds
(ENIGMA-T curve), on Figure 2A and 2B. For all artificial
datasets, the performance of ENIGMA-N at FDR = 0.05
(medium gray dot) is close to the optimum of this curve,
indicating that FDR control at a reasonable level gives
near-optimal performance.

Among the biclustering methods, the rather poor per-
formance of the ISA algorithm (ΔF with ENIGMA-M =
0.34 on average) may seem somewhat surprising. Prelić et
al [18], using the same implementation of ISA but other

Performance on artificial dataFigure 2
Performance on artificial data. Performance of ENIGMA versus other coexpression measures and biclustering methods 
on (A) modular and (B) non-modular toy datasets. The ENIGMA-T curve shows the performance for the ENIGMA coexpres-
sion network at several non-corrected p-value thresholds, ENIGMA-N stands for the ENIGMA coexpression network at FDR 
= 0.05, and ENIGMA-M for the final clustering result.
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methods to generate artificial data and to assess bicluster-
ing performance, previously established that the perform-
ance of ISA decreases with increasing overlap between
biclusters. Our results seem to confirm that ISA is not the
optimal method in case there is substantial overlap
between modules. The performance of ISA did not change
significantly when using 500 starting points instead of the
default 100 (results not shown).

The performance gain of ENIGMA-M over SAMBA is sub-
stantially smaller (ΔF = 0.03 on average), and on two out
of 10 datasets, the performance of SAMBA was slightly
higher than that of ENIGMA-M (see Additional file 1
Tables S1 and S2). A more tangible advantage of ENIGMA
over SAMBA (and ISA) is that ENIGMA nearly always
recovered the correct number of modules (20 ± 1),
whereas SAMBA consistently predicted more modules
than there were in the input data (53 ± 6 modules). ISA
predicted only one extra module on average, but with a
higher variance than ENIGMA (21 ± 4). In other words,
SAMBA and to a lesser extent ISA produce more frag-
mented and/or more redundant modules. Redundancy
makes the module output much harder to interpret, but it
is not taken into account by the standard F-measure.

To quantify the effect of redundancy on the clustering
quality, we compared SAMBA, ISA and ENIGMA-M using
the F'-measure. As in the calculation of the F'-measure
used in the clustering optimization procedure (see
above), edges that are inferred by multiple modules are
counted multiple times, but in the present case, multiply
defined edges may also occur in the input network if they
overlap between multiple artificial input modules (see
Additional file 1 Figure S1 B). Specifically, edges that are
inferred by x output modules and y input modules are
now counted as y tp and x - y fp in case x ≥ y, or x tp and y
- x fn in case x <y. Using the F' criterion, the performance
of ENIGMA-M (F' = 0.85 ± 0.03) is substantially higher
than that of SAMBA (F' = 0.74 ± 0.03) and ISA (F' = 0.51
± 0.09, see Additional file 1 Tables S3–S5).

On non-modular artificial data, the performance of
ENIGMA-M and the biclustering methods SAMBA and ISA
is very low (see Figure 2B and Additional file 1 Tables S6
and S7). This is not surprising since there are no modules
to be found in these datasets. In this respect, a particularly
attractive feature of ENIGMA is that it finds very few mod-
ules in the non-modular data (3 ± 1 modules containing
on average 5 genes each, precision of clustering result =
0.27), in contrast to ISA and SAMBA, which recover 78 ±
5 modules (containing on average 27 genes) and 127 ± 2
modules (containing on average 16 genes), respectively.
Among the pair-wise methods, ENIGMA-N invariably fea-
tured the highest performance, indicating that our combi-
natorial statistic detects partial coexpression relationships

more efficiently than PCC and χ2. The fact that ENIGMA
efficiently uncovers coexpression relationships in non-
modular data opens perspectives for the exploration of
the less modular parts of expression datasets. Real datasets
typically contain a limited number of perturbation exper-
iments that target a few specific processes. These processes
can be expected to be rather well resolved in terms of their
coexpression relationships, whereas other processes will
probably give rise to more fragmented (less modular)
regions in the network. Moreover, despite the success of
the modularity concept in the analysis of expression data
and systems biology in general, it is not inconceivable that
transcriptional networks might also contain genuinely
non-modular regions.

Testing on real data: the Rosetta gene expression 
compendium
p-value versus log-ratio based discretization
Although useful for testing and comparing methods, arti-
ficial datasets do not capture the complexity of real bio-
logical systems. Consequently, good performance on
artificial data does not guarantee good performance on
real biological data. In order to assess the use of ENIGMA
for analyzing real data, we applied our methodology to
the Rosetta compendium of expression profiles, repre-
senting data on 300 different experimental perturbations
of S. cerevisiae [4]. Experiments on 20 strains that were
marked as aneuploid in the original dataset were left out,
because they can give rise to artificial expression correla-
tions between genes on the aneuploid chromosomes. The
log-ratio expression data and differential expression p-val-
ues were downloaded in prenormalized and preprocessed
form. Genome-wide ChIP data for 102 TFs were obtained
from Harbison et al [39]. All genes that are bound with p
< 0.005 by a certain TF were considered reliable targets.
Protein and genetic interactions for S. cerevisiae were
obtained from the BioGRID database [40].

Using a differential expression p-value threshold of 0.01
in the discretization step and an FDR threshold of 0.05 for
defining coexpression edges, ENIGMA identified a net-
work of 100,762 significant positive coexpression links
and 30,390 negative coexpression links involving 2,871
genes. The clustering parameters (ν1, ν2) = (0.30, 0.55)
were optimized by MCSA as described in the Algorithm
section. To assess the efficiency of the MCSA procedure,
we performed an exhaustive screen of the parameter space
to locate the global maximum of the F'-measure criterion
(see Additional file 1 Figure S3). The MCSA procedure
found back the global optimum with 100% efficiency.

ENIGMA discovered 206 modules in the Rosetta dataset
encompassing 2201 genes and 141 conditions (see sup-
porting data for module details and figures). These num-
bers seem reasonable given that 130 of the 280 conditions
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included in the compendium contain less than five differ-
entially expressed genes, which entails that they have a
small chance of contributing to a module. Given the low
amount of informative conditions, it is not surprising that
only a third of the S. cerevisiae genes can be included in
modules. According to the GO enrichment results, 107
out of 206 modules have a significant degree of functional
coherence. Fifty-four modules are enriched in targets of
one or more TFs, and 39 modules show enrichment of
both GO Biological Process categories and TF binding
sites. Together, 60% of the modules show enrichment of
GO categories and/or TF binding sites, indicating that our
method is capable of identifying biologically relevant
expression modules.

In order to qualitatively assess the effect of using a differ-
ential expression p-value cutoff in the discretization step
instead of a fold-change cutoff, we repeated the analysis
using a |log2 ratio| discretization threshold of 1 (two-fold
up- or downregulation). The resulting coexpression net-
work contains 58,612 positive and 2,837 negative links
between 2,581 genes. The clustered network contains 206
modules encompassing 1,853 genes. Ninety-three mod-
ules exhibit GO enrichment, 47 exhibit TF binding enrich-
ment and 35 exhibit both. Despite the significantly lower
amount of connections in the log-ratio network, the
number of functionally coherent modules and the
number of clustered genes is roughly similar, and the opti-
mized clustering parameters (ν1, ν2) = (0.30, 0.55) are
identical, indicating that the general structure of the net-
work and its strongest modules are fairly well preserved.
Indeed, many highly functionally coherent modules (a.o.
related to amino acid metabolism, hexose transport, ster-
oid biosynthesis, iron ion homeostasis, mating) are
present in both networks. Not incidentally, many of these
modules are related to the processes that were targeted by
Hughes et al [4], which can be expected to show a pro-
nounced expression response. However, modules that
show less pronounced expression variations, for example
the modules related to ribosome biosynthesis, are not
recovered in the log-ratio network. This illustrates the
main disadvantage of using a fixed log-ratio threshold:
different processes show different amplitudes of expres-
sion change upon perturbation, which cannot be captured
by a single threshold. One could argue that this can easily
be remedied by standardizing the expression profiles to
zero mean, unit variance before applying the threshold, as
is done by some methods, e.g. SAMBA [17]. However, in
the case of perturbational data, this manipulation runs
the risk of effiectively breaking the connection to the ref-
erence condition, thereby distorting the meaning of up-
and downregulation and introducing serious artifacts (see
Additional file 1 Figure S4).

Topological characteristics of the ENIGMA coexpression network
Since many cellular functions are carried out in a highly
modular manner [41], most cellular networks, including
protein interaction networks, metabolic networks and
gene expression networks, are modular in nature [42-47].
On the other hand, many cellular networks, including
coexpression networks, have been claimed to exhibit a
node degree (k) distribution of the power-law type, P(k) ~
k-γ, indicative of scale-free properties [47-49]. The coexist-
ence of modularity and a scale-free degree distribution
can be explained by assuming a hierarchical modular net-
work organization [43,47,49]. According to this view, the
network consists of a hierarchy of nested topological
modules of increasing size and decreasing coherence. In
other words, small coherent modules combine to form
larger and less coherent modules in a hierarchical fashion.
At reasonable levels of module resolution, the modules
consist mainly of sparsely connected but highly clustered
nodes (low k, high C). The modules are linked together
through a small number of highly connected nodes with
a low clustering coefficient (high k, low C), often referred
to as hubs. In the case of coexpression networks, these
hubs represent genes that are linked to different expres-
sion modules depending on the experimental conditions.

A few papers [50,51] have cast doubt on the ubiquity of
power-law degree distributions in biological networks,
claiming that some of the supposed power-laws actually
turn out to be closer to exponentials when rigorously ana-
lyzed. Indeed, the degree distribution of the ENIGMA co-
differential expression network appears to be exponen-
tially distributed (Figure 3A), at least for lower k. For
higher k, the picture is different. Relative to the distribu-
tion obtained for lower degrees, the most highly con-
nected nodes (hubs) seem to be underconnected. This
observation is exactly the opposite of what would be
expected for a power-law ('fat-tailed') degree distribution
(i.e. highly connected nodes should be overconnected
with respect to the exponential distribution), indicating
that the coexpression hubs are not nearly as central in the
network as would be expected in a scale-free network.
However, from the plots of the clustering coefficient C ver-
sus the degree k (Figure 3B), it is apparent that the highly
connected nodes still possess hub-like characteristics: they
generally have a lower clustering coefficient and are
assigned to multiple modules. Thus, highly connected
nodes act more as local hubs that hold together a few
modules. These hubs, by virtue of their polytomous
expression behavior, may represent genes that function at
the interface of several processes. An example of genes that
probably interface between the cell cycle, mating pherom-
one response and cell wall biosynthesis is given below.
Overall, 1050 genes are linked to 2 or more modules and
115 are linked to 5 or more modules, indicative of exten-
sive crosstalk at the transcriptional level.
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Comparison between ENIGMA, SAMBA and ISA
Rigorously comparing the performance of (bi)clustering
algorithms on real data is extremely difficult, because of
the lack of adequate gold standards and the subjectivity of
the available external performance criteria [23]. Therefore,
we limit ourselves to a more qualitative comparison of the
ENIGMA, SAMBA and ISA modules obtained on the
Rosetta dataset. SAMBA was run with default parameter
settings, for ISA we used the BicAT implementation [36]
with parameters tG = 3.1, tC = 2.0 and 10,000 starting
points (see [14] for parameter details). The ISA biclusters
were pruned by merging biclusters that showed more than
80% overlap. The ISA and SAMBA biclusters were put
through the ENIGMA postprocessing pipeline to func-
tionally annotate them and to screen them for TF binding
enrichment. SAMBA identified 314 modules containing
3,437 genes and 279 conditions. 203 modules were
enriched in one or more GO Biological Process categories,
161 modules were enriched in binding sites for one or
more TFs, and 136 modules showed both GO and TF
binding enrichment. ISA identified 236 modules contain-
ing 3,065 genes and 261 conditions. Eighty-one modules
were enriched in one or more GO Biological Process cate-
gories, 39 modules were enriched in binding sites for one
or more TFs, and 28 modules showed both GO and TF
binding enrichment. These numbers are not directly com-
parable between methods, because of the differing degrees
of overlap (redundancy) between modules in the three
formalisms. SAMBA generates a lot of biclusters with
largely overlapping gene content (but different condition
sets), whereas the gene overlap between the ENIGMA
modules and especially the pruned ISA modules is more
limited. For instance, SAMBA identified 17 modules
enriched in conjugation-related genes, containing a total

of 46 genes annotated to 'conjugation' in GO (see Table
1). In contrast, ENIGMA and ISA identified fewer conjuga-
tion modules (10 and 11, respectively), but containing
similar amounts of known conjugation genes (43 and 42,
respectively).

Instead of comparing general properties such as the over-
all coverage of genes and conditions by biclusters, the pro-
portion of GO-enriched modules or the average specificity
(functional coherence) of the enriched modules, we
focused our comparison on the biological processes that
were mainly targeted by Hughes et al [4] (see Table 1),
namely mating (conjugation), ergosterol biosynthesis,
cell wall biogenesis, oxidative phosphorylation and iron
ion homeostasis. All three formalisms uncover modules
that are highly enriched for these processes. We used two
criteria to assess the module representation of a given GO
class A, namely the overall recall, or proportion of genes
annotated to A found across all modules enriched for A,
and the top module precision, or the proportion of genes
in the most significantly enriched module that belong to
A. SAMBA generally detects slightly more true positive
genes than ENIGMA (higher recall), but at the expense of
a lower top module precision and a higher amount of
modules (see Table 1). ISA generally features a lower recall
than SAMBA and ENIGMA, but frequently exhibits better
top modules in terms of precision. In short, the main dis-
tinction between the formalisms seems to be a difference
in balance between precision and recall. Moreover, the
interpretation of the criteria defined above is not always
straightforward. For instance, a lower top module preci-
sion is not always caused by a lack of functional coher-
ence, but may be caused by the presence of genes involved
in closely related processes. If we look at the overlap

Topological characteristics of the Rosetta networkFigure 3
Topological characteristics of the Rosetta network. (A) Semilog rank-degree plot for the ENIGMA network inferred 
from the Rosetta data [4]. (B) Plot of the clustering coefficient of a node's neighborhood as a function of the node degree k. 
The data points are colored according to the number of modules to which the corresponding gene is assigned.
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between the gene sets identified by the three methods (see
Additional file 1 Figure S5), it becomes clear that all three
formalisms add extra information to the global picture.
For all 5 processes in Table 1, a sizeable core of genes is
identified by all three methods, but the different methods
also have substantial idiosyncrasies. For instance, only 25
out of a total of 64 identified conjugation-related genes
are found by all three formalisms. Eleven genes are found
by ENIGMA and SAMBA but not ISA, two genes are found
by ENIGMA and ISA but not SAMBA, and four are shared
between SAMBA and ISA but not ENIGMA. Five genes are
ENIGMA-specific, 6 are SAMBA-specific and strikingly, 11
are ISA-specific, although ISA identifies the least number
of conjugation genes in total and has the 'worst' top mod-
ule. This illustrates that different methods have different
focuses and biases, and that integration of the results of
different analysis methods often leads to a better global
picture.

Pheromone response modules
In order to further assess the capacity of ENIGMA to dis-
cover biologically relevant connections between genes
and processes, we took a closer look at the mating-related
ENIGMA modules. The Rosetta compendium contains
expression data on at least 20 mating-related perturba-
tions, and consequently the mating pheromone response
system is well resolved in the ENIGMA network. Several
mating-related modules were uncovered (notably mod-
ules 28, 77, 115 and 171, see Figure 1, Figure 4 and sup-
plementary material at [52]).

Module 28 is most strongly related to mating (see Figure
1). Twenty-three of the 37 genes in this module are anno-
tated to the GO category 'conjugation' (GO:0000746, p =
3.98E-29). Four TFs exhibit binding enrichment in mod-
ule 28: Ste12, Dig1, Mcm1 and Tec1. All of these function
in the regulation of the mating pheromone response
(which includes mating, pseudohyphal and invasive
growth). Two regulators show significant coexpression
links with the module: Ste12, an important regulator of
the mating response (which is in fact part of the module)
and Tec1, a transcription factor involved in the regulation
of haploid invasive and diploid pseudohyphal growth.
The mating and invasive/pseudohyphal growth signaling
pathways share many of the same components, and Tec1
is believed to mediate an invasive growth response upon
low levels of pheromone signaling [53,54]. Whereas Ste12
appears to be the main regulator for module 28, Tec1 is
mainly coexpressed with genes that are shared between
module 28 and modules 77, 115 or 171. Modules 115
and 171 are smaller pheromone response-related mod-
ules (see figures in supplementary material [52]). Both
modules contain Tec1 as a member gene, suggesting that
these modules might be more related to pseudohyphal
growth than to the conjugation process.

Module 77 exhibits a more complicated substructure,
with five major patterns (1–5) in the condition dimen-
sion and five in the gene dimension (a-e, leafs 6 and f
group smaller leafs, see Figure 4). Most of the known mat-
ing-related genes in module 77 reside in the gene leafs e

Table 1: Performance on Rosetta data

Top module

GO category # genes method # modules tp R p tp P

conjugation (GO:0000746) 117 ENIGMA 10 43 0.37 3.98E-29 23 0.62
SAMBA 17 46 0.39 4.10E-29 24 0.55

ISA 11 42 0.36 1.55E-15 18 0.28
ergosterol biosynthesis (GO:0006696) 26 ENIGMA 4 14 0.54 1.28E-12 9 0.23

SAMBA 3 16 0.62 1.93E-14 15 0.08
ISA 1 11 0.42 1.23E-19 11 0.39

cell wall biogenesis (GO:0042546) 32 ENIGMA 1 8 0.25 2.35E-06 8 0.08
SAMBA 4 9 0.28 6.89E-06 9 0.06

ISA 1 7 0.22 6.32E-07 7 0.13
iron ion homeostasis (GO:0055072) 38 ENIGMA 4 15 0.39 2.35E-16 11 0.37

SAMBA 13 16 0.42 3.99E-18 13 0.33
ISA 2 13 0.34 8.43E-14 13 0.15

oxidative phosphorylation (GO:0006119) 38 ENIGMA 6 23 0.61 3.02E-12 9 0.35
SAMBA 11 30 0.79 2.34E-32 20 0.44

ISA 2 8 0.21 1.20E-05 6 0.14

Comparison of ENIGMA, SAMBA and ISA results for selected biological processes targeted by Hughes et al. [4]. The three middle columns give the 
number of modules enriched for the GO class in the first column, the total number of genes annotated to that GO class in these modules (tp) and 
the corresponding recall (R). The three last columns contain the enrichment p-value of the top module, the number of true positives (tp) and the 
proportion of genes in the top module annotated to the respective GO class (precision P).
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and f. Several genes in these leafs overlap with the mating
module 28. In contrast, most of the genes in the leafs b
and c overlap with module 12, a module enriched in cell
wall biogenesis genes (p = 6.26E-10). Nevertheless, most
of these genes contain binding sites for Ste12 and Dig1

and some for Tec1, justifying their presence in a pherom-
one response-related module. While the genes in leaf c
appear to be genuinely related to cell wall biogenesis,
none of the genes in leaf b is annotated as such. Com-
pared to the genes in leaf c, the genes in leaf b show a dis-

Mating module 77Figure 4
Mating module 77. A module enriched in pheromone response genes. The colors of individual spots reflect the expression 
ratios (experiment vs. control, blue = upregulated, yellow = downregulated, white = missing value). The module is split in leafs 
in both dimensions based on average linkage clustering using a cosθ threshold of 0.65. In order not to crowd the figure, leafs of 
size < 3 are grouped in a single leaf beyond the red line (rightmost leaf and bottom leaf). Transcription factors are highlighted 
in yellow in the gene list if there is ChIP data available for them, while other regulators are highlighted in red. To the right of 
the expression matrix is a column indicating the module's seed genes (red). Further to the right is a matrix depicting the pres-
ence of enriched TF binding sites (yellow) and/or significant co- or antiexpression links with potential regulators (green and 
red, respectively; the hue is proportional to the p-value of the link; in case of overlap with an enriched binding site, the field is 
colored dark green or dark red). The expression profiles of these regulators are depicted on top of the module's expression 
matrix. Note that regulators that are part of the module are not repeated on top unless they also exhibit significant binding site 
enrichment. To the far right are matrices depicting the genes' membership of enriched GO categories (orange) and member-
ship of other modules (blue). The black and magenta arcs represent protein and genetic interactions, respectively. The arrow 
indicates the tec1Δ experiment (see main text).
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tinctive subpattern in condition leaf 2, which mainly
contains perturbations that affect the cell cycle, DNA
maintenance and DNA repair. Interestingly, the genes in
leaf b also distinguish themselves from the ones in leaf c
(except for MID2) by the presence of TF binding sites for
Swi4 and Swi6, which together form the SBF complex that
regulates transcription at the G1/S transition [55]. Addi-
tionally, the genes in leaf b show strong coexpression
links with the cyclins Cln1 and Cln2. Both Swi4 and Swi6
are potential substrates of the protein kinase Cdc28,
which is activated by Cln1 and Cln2 [56]. Together, these
data suggest that the genes in leaf b function at the inter-
face of cell wall biogenesis, the G1/S transition and mat-
ing/filamentous growth. Such a link makes sense since
upon activation of the pheromone signaling pathway, the
yeast cell cycle is arrested in G1 and extensive cell wall
rearrangements take place [57].

Together with the genes in leafs b and f, most genes in leaf
e are strongly repressed under the pheromone response-
related perturbations in condition leaf 1. Unlike leafs b
and f, only a few genes in leaf e (FUS1 and WSC3) feature
bona fide Ste12 or Tec1 binding sites. However, the
expression of the other genes in leaf e (with the exception
of HAP1) is specifically and strongly downregulated upon
haploid TEC1 deletion (arrow on Figure 4), suggesting
that these genes are somehow transcriptionally regulated
by Tec1. Further investigation made apparent that several
of the genes in leaf e are flanked by or overlapping with an
antisense Ty1 retrotransposon long terminal repeat (LTR)
on the 3' side (GAS2, YLR334C, YOL106W) or the 5' side
(NDJ1). The presence of these Ty elements is highly rele-
vant, since TEC1 was originally described as a gene
required together with STE12 for full Ty1 expression
[58,59]. Three of these genes (GAS2, YLR334C and NDJ1)
were found to be directly or indirectly associated with
TEC1 in a previous study in which the Rosetta compen-
dium was analyzed using a Bayesian network framework
[60]. A peculiar member gene of leaf e is HAP1, a tran-
scription factor involved in the regulation of respiratory
metabolism in response to levels of heme and oxygen.
Interestingly, HAP1 also contains a 3' Ty1 insertion in the
yeast strain used by Hughes et al (a derivative of strain
S288c) [61], which helps explain its puzzling presence in
a pheromone response module and strengthens our belief
that the Ty1 elements are responsible for the link between
leaf e genes and mating genes.

The coexpression of NDJ1 with TEC1 can be directly
explained by the presence of a 5' Ty1 LTR in antisense
direction (Ty1 LTRs have been found to drive expression
in an orientation-independent manner [59]). For GAS2,
YLR334C, HAP1 and YOL106W, the situation is different
given the 3' location of the flanking Ty1 LTRs. Tec1 and
Ste12 activation of these Ty1 elements could in theory

cause the production of antisense transcripts of these loci.
Since the probes spotted on the microarray used by
Hughes et al [4] contained both strands of the gene
sequences, such antisense transcripts might be responsi-
ble for the observed coexpression pattern.

We did not test the antisense hypothesis; the analysis we
present here is merely intended as a use case to show that
ENIGMA can generate hypotheses that can be tested in the
lab. We did however briefly investigate whether the Ty1-
associated genes (or maybe their antisense transcripts)
could be functionally related to the mating process. Only
two genes in leaf e (PRM5 and FUS1) are known to be
involved in mating. Neither of them is flanked by a Ty1
LTR. One gene overlapping with an antisense Ty1 LTR,
YOL106W, was previously reported to elicit a mating-
related phenotype upon deletion [62]. We performed
mating experiments, halo assays and growth assays (see
Methods) for two other 3' Ty1-associated genes in leaf e,
namely YLR334C (overlapping antisense Ty1 LTR) and
GAS2 (non-overlapping antisense Ty1 LTR), in addition
to a wild type (WT) strain and sst2Δ, a mutant that is
supersensitive to mating factor-induced G1-arrest.

The ylr334cΔ deletion strain did not yield an interesting
phenotype in any of the assays. The gas2Δ deletion strain
exhibited an interesting phenotype in the halo assay, char-
acterized by extensive colony formation inside the halo
(see Figure 5), which indicates that deletion of GAS2
somehow facilitates the recovery from α-factor induced
growth arrest. In the mating and growth assays, we did not
observe any effect of GAS2 deletion on the mating ability
(see Additional File 1 Table S8, Table S9 and Figure S6).
GAS2 is homologous to GAS1, which encodes a 1,3-β-glu-
canosyltransferase required for cell wall assembly. In a
recent study, GAS2 was found to be involved in spore wall
assembly [63]. Ectopic expression of GAS2 under control
of the GAS1 promoter was found to complement the
gas1Δ phenotype only partially, and only at pH = 6.5 [63].

Halo test for α-factor based growth inhibitionFigure 5
Halo test for α-factor based growth inhibition. Yeast 
strains (OD600 = 1) were plated on YPD plates and 1000 
pmol of α-factor was spotted. The pictures are taken after 
48 hours of incubation at 30°C. Strains: A: Wild type BY4741 
(MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0), B: sst2Δ, C: gas2Δ.

A B C
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It is therefore unlikely that GAS2 directly functions in reg-
ular cell wall assembly or maintenance. In one hypotheti-
cal scenario, antisense transcripts of GAS2, produced
under control of Tec1, might interfere with the expression
of its homolog GAS1 and hence indirectly with the forma-
tion and maintenance of the cell wall. An altered cell wall
morphology might influence the efficiency with which α-
factor is inactivated, which could explain the observed
gas2Δ phenotype. Obviously, this is only a hypothesis and
much more detailed experimentation is needed to unravel
if and how GAS2 is linked to the pheromone response
pathway. This is however outside the scope of the present
study.

Implementation
ENIGMA is implemented as a command-line Java applica-
tion that is open-source and freely available (under the
GNU General Public License) from [52]. ENIGMA can be
used for any organism for which there is sufficient gene
expression data available. The only organism-specific part
of the ENIGMA algorithm is the functional annotation
module, which is based on the BiNGO tool [34]. ENIGMA
can be used out-of-the-box for 24 organisms, including
yeasts, invertebrates, plants and mammals (see Manual
section of [52]). Furthermore, ENIGMA allows the use of
custom GO annotation files and GO Consortium files to
accommodate other organisms.

Conclusion
We have developed a novel method, called ENIGMA, to
analyze perturbational microarray data. One of the inno-
vations of our methodology is the use of a combinatorial
statistic that is capable of detecting significant partial
coexpression relationships between genes. In this respect,
our method can be considered similar in purpose to
biclustering methods, although ENIGMA assesses coex-
pression links between individual genes rather than
expression coherence in a group of genes under a group of
conditions. Our method produces both a detailed net-
work of significant pair-wise coexpression links and a
high-level representation of the modularity in the expres-
sion network.

Tests on artificial data have shown that ENIGMA outper-
forms other methods, although ENIGMA wins from
SAMBA on points rather than by knockout. Similar near-
draws with SAMBA were reported earlier for cMonkey [23]
and BiMax [18]. This indicates that the (bi)clustering field
has matured to a point at which it becomes increasingly
difficult to easily improve on the performance of existing
methods. However, ENIGMA does have some specific
advantages. First, in contrast to other discretization-based
methods such as SAMBA, ENIGMA discretizes the expres-
sion data based on differential expression p-values. Sec-
ond, ENIGMA efficiently retrieved the correct number of

modules from artificial datasets and actively avoids gener-
ating redundant modules, which greatly improves the
interpretability of the results. Third, ENIGMA's clustering
parameters are automatically optimized or can be set on
relatively objective grounds. A fourth advantage that is
more obvious on real data is the use of ENIGMA's expres-
sion module concept for biological discovery. In contrast
to the coherent biclusters generated by most methods, an
ENIGMA expression module may contain distinctive sub-
patterns. From our analysis of the Rosetta data, it became
apparent that these subpatterns frequently represent more
tightly coregulated gene clusters involved in biological
processes related to a common functional theme. In our
view, the grouping of such different but statistically and
functionally connected patterns in one module aids
greatly in the biological interpretation of the data and in
the assessment of crosstalk between biological processes.
The interpretation of a module's substructure is further
facilitated by the integration of other data types. This is
illustrated in our analysis of module 77, a pheromone
response module which shows links to the cell cycle, cell
wall biosynthesis and Ty1 LTR-associated genes.

Although numerous approaches have already been used
to mine the Rosetta compendium [4,49,60,62,64],
ENIGMA offers yet another perspective on the data. This
mainly illustrates that the ideal clustering method does
not exist [23,65], and that no single approach can extract
all the information hidden in large compendium datasets.
The elucidation of the regulatory networks governing the
many different aspects of cellular function will therefore
not only require the integration of different types of data,
but also the integrated use of several complementary
methods to analyze these data. We believe that ENIGMA
constitutes a valuable addition to the existing repertoire of
analysis methods.

Methods
Mating experiments
Yeast strains were grown overnight in YPD [yeast extract
(1%), peptone (2%) and glucose (2%)] and diluted to an
OD600 = 0.5 in fresh YPD. 500 μl of each strain (MATa)
was mixed with 500 μl of the wild type strain (MATα). The
cells were shaken with 180 rpm at 30°C. At time points 0
h, 4 h and 24 h, 100 μl samples were serially diluted and
plated on medium lacking either methionine (MATα),
lysine (MATa) or methionine and lysine (diploids).

Halo assay
A halo assay to measure response to and recovery from
pheromone-induced growth arrest was performed as fol-
lows. Yeast cells (MATa) were grown overnight and
diluted to OD600 = 1. 500 μl was plated on YPD plates
(1.5% agar in YPD). When the plates were dry, 2 μl of the
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α mating factor (= 1000 pmol) was spotted. The cells were
allowed to grow for 48 hrs before the plates were scanned.

Growth assay
Yeast strains (MATa) were incubated with the wild type
strain (MATα) for 4 hours as described above and diluted
to OD600 = 0.1. The length of the lag phase and the maxi-
mum growth rate of yeast strains in SDglu without lysine
and methionine were monitored automatically by OD600
measurements with a BioscreenC apparatus (Labsystems).
The parameters were as follows: 300 μl of culture in each
well, 30 s of shaking each 3 min (medium intensity), and
OD600 measurement every hour. Readings are saturated at
OD600s above 1.5.
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