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Abstract
Background: Successive whole genome duplications have recently been firmly established in all
major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed
to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular,
all time-linear network growths modeled so far.

Results: We propose and solve a mathematical model of PPI network evolution under successive
genome duplications. This demonstrates, from first principles, that evolutionary conservation and
scale-free topology are intrinsically linked properties of PPI networks and emerge from i) prevailing
exponential network dynamics under duplication and ii) asymmetric divergence of gene duplicates.
While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level
of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein
domains under exponential and asymmetric duplication/divergence dynamics, with multidomain
proteins underlying the combinatorial formation of protein complexes. Genome duplication then
provides a powerful source of PPI network innovation by promoting local rearrangements of
multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and
topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well
as to finer details of protein interaction and evolution. Finally, large scale features of direct and
indirect PPI networks of S. cerevisiae are well reproduced numerically with only two adjusted
parameters of clear biological significance (i.e. network effective growth rate and average number
of protein-binding domains per protein).

Conclusion: This study demonstrates the statistical consequences of genome duplication and
domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale
across eukaryote kingdoms. In particular, scale-free topologies of PPI networks, which are found
to be robust to extensive shuffling of protein domains, appear to be a simple consequence of the
conservation of protein-binding domains under asymmetric duplication/divergence dynamics in the
course of evolution.

Background
Gene duplication is considered the main evolutionary

source of new protein functions [1]. Although long sus-
pected [2,3], whole genome duplications have only been
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recently confirmed [4-12] through large scale compari-
sons of complete genomes.

Whole genome duplications are rare evolutionary transi-
tions followed by random nonfunctionalization of many
gene duplicates, resulting in characteristic reciprocal gene
loss patterns [4,9,13], on time scales of about 100 MY
(with large variations between genes, see Discussion).
Whole genome duplications presumably provide unique
opportunities to evolve many new functional genes at
once through accretion of functional domains [14-20]
from contiguous pseudogenes (or redundant genes) and
may also promote speciation events by preventing genetic
recombinations between close descendants with different
reciprocal gene loss patterns [13,21].

Consecutive whole genome duplications (WGDs) have
now been firmly established in all major eukaryote king-
doms within the last 300–500 MY, i.e. about 10–15% of
life history.

WGDs have been more frequent in plants [22] due to their
widespread polyploidy; for instance, there were 3 consec-
utive WGDs in the recent evolution of the flowering
plants Arabidopsis thaliana [7] and Populus trichocarpa [23]
while 4 WGDs can be identified in Solanum (potato), Gos-
sypium (cotton) and Brassica genomes [22]. Overall, there
were between 2 and 4 WGDs in plants in the last 300 MY
and many extant species like Solanum (potato), Glycine
(soybean) or Saccharum (sugarcane) have undergone a
recent WGD and are still essentially pseudotetraploid
plants with about twice as many gene loci as their close
relatives lacking this recent WGD. They are living exam-
ples of the dramatic simultaneous changes a single WGD
event produces on a genome. No other genome rearrange-
ment is known to have a comparable immediate impact
on the evolution of genomes (with the exception of endo-
symbiotic events).

Successive genome duplications have also occurred in ani-
mal genomes, even though most extant species are dip-
loids. In vertebrates (chordates), there are, for instance, 4
consecutive WGDs between the seasquirt Ciona intestinalis
and the common carp, Cyprinus carpio, with most tetrap-
ods (including mammals) in between at +2WGDs from
seasquirt and -2WGDs from carp and most bony fish at
+3WGDs from seasquirt and -1WGDs from carp
[11,12,24,25]. In fact, the common carp, Cyprinus carpio,
and other bony fish from the salmonidae family (salmon,
trout) as well as the amphibian Xenopus laevis and even the
mammal Tympanoctomys barrerae (red vizcacha rat from
Argentina [26]) are all pseudotetraploid vertebrates.
[Constitutive tetraploidy is even occasionally observed in
humans where it is responsible for 1 to 2% of early mis-

carriages but may lead, in rare cases, to liveborn infants
reaching the age of two [27].

Amongst invertebrates, examples of polyploid species are
also suspected or confirmed in most phyla, as in annelids
(e.g., leeches [28]), flatworms (e.g., Stenostomum [29]),
mollusks (e.g., Pacific oyster, Crassostrea gigas [30]) and in
the major classes of arthropods, including insects (e.g.,
Nabis pallidus [31]), maxillopods (e.g., copepods [29])
and branchiopods (e.g., brine shrimp [32]). Finally,
WGDs have also occured in protists; in particular, there
were at least 3 consecutive WGDs in the ciliate Paramecium
tetraurelia [33]. Other WGDs will likely be uncovered as
more eukaryote sequences will become available.

Extrapolating from these 2 to 4 consecutive WGDs in the
last 300–500 MY for typical eukaryote genomes, one
roughly expects a few tens consecutive WGDs (or equiva-
lent "doubling events") since the emergence of eukaryo-
tes, if not the origin of life itself. [While WGDs do not
seem readily traceable in extant prokaryote genomes, they
cannot be ruled out either over long evolutionary time
scales (e.g. > 500 MY). In fact, wildtype subpopulations of
bacteria with stable diploid genomes are known to exist
[34]. In addition, viable whole genome recombinants
between different prokaryotes have also been successfully
engineered [35].

These rare but dramatic evolutionary transitions due to
whole genome duplications must have had major conse-
quences on the long time scale evolution of large biologi-
cal networks, such as protein-protein interaction (PPI)
networks.

In this paper, we first discuss some experimental evi-
dences (Fig. 1) and expected consequences of WGDs on
the evolution of PPI networks. We then introduce a gen-
eral model of PPI network evolution under WGD with
asymmetric divergence of duplicated genes (Figs. 2 &3A). It
is first compared to datasets of direct physical interactions
from Yeast PPI network (Figs. 3B &3C) and also to an
alternative model with symmetric protein divergence but
random link "complementation" [36,37] (Additional file
1(Fig. S1)). We then redefine this initial asymmetric diver-
gence model (Fig. 2) in terms of protein-binding domains
(Figs. 4A &4B) to account for indirect protein-protein
interaction within multi-protein complexes (Figs. 4A
&4C) and study the robustness of PPI network topology
against domain shuffling of multi-domain proteins.

Results
Effect of WGD on PPI network evolution
A direct experimental evidence for the effect of WGD on
PPI network evolution is illustrated in Fig. 1. It concerns
the baker yeast, S. cerevisiae, which has the best available
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PPI network dataset [38,39] and a well established WGD
dating back about 150 MY [4,6,9]. About 90% of the ini-
tial pairs of duplicated proteins from this WGD have since
then undergone reciprocal gene loss, leaving about 549
remaining pairs in the extant genome, amongst which 259

have both duplicated proteins included in the available
PPI network [38]. The latter pairs of duplicated proteins
are found to be about 20 times more likely to share some
common protein partners as compared to randomly
picked pairs of proteins, while their connectivity distribu-
tion is essentially the same as other interacting proteins in
the PPI network, Fig. 1. This demonstrates that at least
some of the duplicated interactions that were necessary
present immediately after WGD have not been lost in the
course of 150 MY of evolution, despites the divergence of
the corresponding duplicated pairs and all their (initially)
shared partners. The same trend has also been reported
when considering protein pairs with a significant
sequence homology [40]. This direct experimental evi-
dence for the effect of WGD on PPI network evolution is
even more compelling when considering protein pairs
sharing more than one partner in the PPI network; for
instance, duplicated pairs from this 150 MY-old WGD are
about 1,000 times more likely to share 10 or more part-
ners as compared to randomly picked pairs of the PPI net-
work, Fig. 1.

From a more theoretical point of view and on longer evo-
lutionary time scales (e.g. > 500 MY), we also expect that
alternating WGDs and extensive gene deletions lead to
exponential dynamics of PPI network evolution. In the
long time limit, this should outweigh all time-linear
dynamics that have been assumed in PPI network evolu-
tion models so far [36,41-45] (see, however, Discussion).
In fact, the prevailing exponential dynamics of genome
evolution is already clear from the wide distribution of
genome sizes [1,3] and proliferation of repetitive ele-

Duplicated proteins from the 150 MY old WGD of S. cerevi-siae share protein partnersFigure 1
Duplicated proteins from the 150 MY old WGD of S. 
cerevisiae share protein partners. Distribution of dupli-
cated (red) and random (black) node pairs versus number of 
shared partners. Node degree distribution of duplicated pro-
teins (green) and all proteins of PPI network (blue).
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Model of protein-protein interaction network evolution through whole genome duplicationFigure 2
Model of protein-protein interaction network evolution through whole genome duplication. Whole genome 
duplication is followed by asymmetric divergence of protein duplicates with random distribution between genome copies (e.g. 1/
1' vs 2/2'): "New" duplicates are left essentially free to accumulate neutral mutations with the likely outcome to become non-
functional and eventually deleted unless some "new", duplication-derived interactions are selected; "Old" duplicates, on the other 
hand, are more constrained to conserve "old" interactions already present before duplication. The duplicated network with 
quadruplated links is graphically rearranged for convenience into old and new network copies (e.g. 2 and 2' duplicated nodes 
are swapped here). Links from the duplicated network are then kept with different probabilities γi (0 ≤ γi ≤ 1) reflecting this 
asymmetric divergence between protein duplicates. An alternative model based on symmetric divergence of protein duplicates 
and random link "complementation" is illustrated in Fig. S1 and discussed in Supporting Information.
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ments [46]: it is hard to imagine that the 104-fold span in
lengths of eukaryote genomes could have solely arisen
through time-linear increases (and decreases) in genome
sizes. [There is even a 105-fold span in genome lengths
when including prokaryotes and 108-fold including
viruses].

Overview of the model
We propose a simple model of PPI network evolution
focussing on the effect of whole genome duplication
(extensions to local or partial genome duplication are pre-
sented in ref [47] and confirm the conclusions of this
paper, see also Discussion). In the present model, each
time step n corresponds to a whole genome duplication

and leads to a complete duplication of the PPI network,
whereby each node is duplicated (×2) and each interac-
tion quadruplated (×4) as depicted on Fig. 2[48]. Hence,
the model considers discrete time steps corresponding to
WGD events. Natural selection is then modeled statisti-
cally, that is regarless of specific evolutionary advantages,
at the level of duplication-derived interactions (see Dis-
cussion). Concretely, links from the duplicated network
are assumed to be stochastically preserved (or deleted)
with different probabilities γi (or δi = 1 - γi) reflecting the
divergence of protein duplicates. In principles, these prob-
abilities γi might vary [47] at each WGD event and
between different proteins, but we will focus in this paper
on the simplest relevant model based on the asymmetric

Analytical and numerical results of PPI Network evolution under whole genome duplicationFigure 3
Analytical and numerical results of PPI Network evolution under whole genome duplication. A. Phase diagram 
for the limit degree distribution as a function of network exponential growth rate, Γo + Γn, and asymmetric divergence of gene 

duplicates, Γo - Γn. In paricular, network conservation and scale-free topology are found to be intrinsically linked properties of 
PPI networks under genome duplication. Colored lines correspond to iso-exponent of scale-free degree distribution. All other 
regions of phase diagram are likely biologically irrelevant (see text). B&C. Comparison with protein direct physical interaction 
data for Yeast from BIND [38] and MIPS [39] databases: BIND (August 11, 2005 release), 4576 proteins, 9133 physical interac-

tions,  = 3.99,  = 106 (filled symbols) and MIPS (downloaded online April 20, 2006), 4153 proteins, 7417 physical interac-

tions,  = 3.57,  = 78.6 (open symbols). Squares correspond to raw data, while circles and triangles are statistically 
averaged with gaps in connectivity distribution for large k ≥ 20, due to the finite size of Yeast PPI network. B. One-parameter 
fit of connectivity distribution data pk (corresponding to the "X" mark in A., see text). Numerical connectivity distribution 
averaged over 10,000 network realizations (central green line). Numerical averages plus or minus two standard deviations 
(±2σ) are also displayed to show the predicted dispersions (upper and lower green lines) [Raw data (squares) do not fit within 
the mean ± 2σ curves for large k due to the finite size of Yeast PPI network]. The fitting parameter γ = 0.26 corresponds to an 
effective growth rate of 1 + 2γ = 1.52. C. One-parameter fit of average connectivity of first neighbor proteins gk [50] (i.e. k.gk 

sums connectivities of first neighbors from proteins of connectivity k). Numerical predictions averaged over 10,000 network 
realizations (central blue line). Numerical averages plus or minus two standard deviations are also displayed (upper and lower 

blue lines). Same fitting parameter value as in B, γ = 0.26. Note that gk is rescaled by /  (as  =  holds for each net-

work realization); this rescales large gk fluctuations between network realizations, due to the divergence of  for pk ~ k-_-1 

with 2 > α > 0 for the one-parameter model.
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divergence of duplicated genes following genome dupli-
cation. For each pair of duplicated genes, one copy,
referred to as the "old" duplicate, diverges more slowly
and retains many of the interactions of the parent gene,
while the other copy, referred to as the "new" duplicate,
diverges more rapidly and looses many of its duplication-
derived interactions. At each WGD steps, the asymmetry
between "old" and "new" duplicates defines three interac-
tion divergence parameters: γo, the probability to preserve
duplication-derived interactions between pairs of slowly
diverging "old" duplicates; γn, the probability to preserve
duplication-derived interactions between pairs of rapidly
diverging "new" duplicates and γ, the probability to pre-
serve duplication-derived interactions between pairs
involving one "old" and one "new" duplicates, see Fig. 2.
In practice, interactions between slowly diverging "old"
partners are much more likely to be preserved than those
involving one or all the more two rapidly diverging "new"
partners, i.e. 1 � γo Ŭ γ Ŭ γn � 0. "Old" and especially
"new" duplicates that loose all their interactions with pre-

vious partners are then eliminated from the PPI network,
while the "old" and "new" labels of selected duplicates are
eventually all reset (to "old") before the next WGD itera-
tion. Hence, "old" and "new" labels are only transient
notations reflecting the asymmetric divergence of dupli-
cated pairs after each WGD event (see Method).

The PPI network evolution resulting from these successive
WGDs is first solved analytically in the asymptotic limit of
large PPI networks and then numerically for comparison
with the available data on the yeast PPI network. Finally,
an extension of this model is proposed to include the role
of protein domains and their extensive shuffling between
multidomain proteins over long evolutionary time scales.

Modelling PPI network evolution under WGD

The interaction network is characterized at each WGD step

n by its number of nodes with k neighbors  and its

total number of links . Yet, we are not

Nk
n( )

L kNn
k
n

k
( ) ( ) /= ≥∑ 2

1

Combining whole genome duplication and domain shuffling of multi-domain proteinsFigure 4
Combining whole genome duplication and domain shuffling of multi-domain proteins. A. Protein-domain interac-
tion network. Nodes now correspond to single binding domains in a protein-domain interaction network (solid lines). Multi-
binding-domain proteins are introduced through a new type of links corresponding to covalent peptide bonds between protein 
domains (black dashed lines). This provides a graphical framework to distinguish mutually exclusive, direct interactions 
("XOR") between protein domains from cummulative, indirect interactions ("AND") within multi-protein complexes (red 
dashed lines). B&C. Comparison with protein direct & indirect interaction data for Yeast from BIND [38] database (B&C 
filled symbols, indirect interactions from [75,76]) and Ref [77] (C open symbols, see Supporting Information). Data are statisti-
cally averaged as in Fig. 3B&C to account for gaps in connectivities for large k ≥ 20, due to the finite size of Yeast PPI network. 
B. Two-parameter fit of both direct connectivity distribution pk and average direct connectivity of first neighbor proteins gk 
[50] (see Fig. 3C and text). Numerical predictions are averaged over 1,000 network realizations (central green and blue lines). 
Numerical averages plus or minus two standard deviations are also displayed to show the predicted dispersions (upper and 
lower green and blue lines). The two adjusted parameters (γ = 0.1 and λ = 0.3) correspond to a network growth rate of 20% 
and an average of 1.5 protein-binding sites (domains) per protein. The connectivity distribution of the underlying single-domain 
network (corresponding to γ = 0.1 and λ = 0.0) is also displayed (brown line) to illustrate its relation to the full multi-domain 
protein network (see text). C. Two-parameter fit of both direct & indirect "matrix" connectivity distribution pk and average 
direct & indirect "matrix" connectivity of first neighbor proteins gk [50] (see text). Same two adjusted parameters (γ = 0.1 and 
λ = 0.3) as in B while a selection of indirect interactions is added up to a total of 28,000 direct and indirect interactions (see 
Supporting Information).
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concerned by the evolutionary details of a particular net-
work realization but rather by the statistical consequences
of successive WGD events on the long evolutionary time
scale of typical PPI networks. To this end, stochastic differ-
ences between possible PPI networks are averaged over all

network realizations, and noted as � � for k ≥ 0 and

�L(n)�. In addition, because evolutionary changes in the

averages � � are coupled to one another for all node

degrees k ≥ 0, it is convenient to model the evolution of

these averages � � by introducing a linear transform of

� � in the form of a "generating function",

which includes all nodes of the network according to their

connectivity k ≥ 0. Permanently disconnected nodes (k =
0) need, however, to be removed from the list of relevant
nodes, as they correspond to proteins that have in fact lost
all previous interactions and presumably their function,
and are eventually eliminated from the genome. To this

end, we redefine the graph size as, ,

where  has been removed, and introduce a normal-

ized generating function p(n)(x) for the mean degree distri-
bution,

The use of generating functions is a standard method [49]

that enables to characterize distributions � � and pk

from their successive moments, e.g.  via the

successive derivatives of their generating functions, e.g.

, j ≥ 1 (see Methods). While the node degree dis-

tributions Nk and pk are purely local characteristics of net-

works, the use of generating functions can, in fact, be
generalized [47] to other, possibly non local features of
interest, such as the average connectivity of first neighbors
gk [50], introduced below.

Asymmetric divergence of duplicated proteins
In the following, we consider a general model of PPI net-
work evolution under WGD which allows for asymmetric
divergence of duplicated proteins, Fig. 2. Symmetric diver-
gence of duplicate proteins corresponds to a particular

case of divergence with vanishing asymmetry and is dis-
cussed in the Supporting Information in the context of an
alternative model based on symmetric duplication-diver-
gence processes with link "complementation" [36,37].

Actually, asymmetric divergence between duplicated
genes is well supported by the reciprocal gene loss pat-
terns arising after WGD [4,6,9]; this demonstrates that
many, if not most, of the initially duplicated genes are
eventually retained as single genes in the duplicated
genome, reflecting clearly the asymmetric fate of dupli-
cated genes after WGD (see, however, Discussion).
Indeed, while duplicated genes are initially equivalent
and experience, at first, the same functional constraints
[51], their divergence becomes eventually asymmetric
[52-54]. This occurs as one duplicate is more constrained
to retain "old" interactions, while the other duplicate is
less constrained and thus accumulates more mutations
with the likely outcome to become nonfunctional by loos-
ing all its duplication-derived interactions, unless some of
them are eventually retained by selection. Note that the
only interaction changes considered in this model are
deletions of duplication-derived interactions (e.g. interac-
tions arising from horizontal gene transfer are more char-
acteristic of prokaryote evolution [55] and neglected here
[45]). As outlined in the model overview above, diver-
gence asymmetry is introduced by assigning different evo-
lutionary parameters γo and γn in between "old" or "new"
duplicated nodes corresponding to a larger and lower
chance to conserve instances of their parent-node interac-
tions, Fig. 2. Duplication-derived interactions arising
between different "old" and "new" duplicates are retained
with probability γ. Note that "old" and "new" labels in
Fig. 2 refer to the asymmetric conservation and fate of
duplicates after WGD (and not to specific genome copies).
Functionalization patterns of duplicated genes are further
discussed in additional file 1.

We have solved this mathematical model of PPI network
evolution under WGD illustrated in Fig. 2. The theoretical
approach detailed in Methods relies on asymptotic meth-
ods applied to a functional recurrence relating successive
normalized generating functions p(n)(x) of the PPI net-
work degree distribution, Eq. 2. We outline here, from a
biological perspective, the main conclusions of this exact
analytical approach. The main results only depend on the
following two combinations of evolutionary parameters,

Γo = γo + γ and Γn = γn + γ, which correspond to the average

rates of connectivity change between successive WGDs, k

→ kΓi, for each type of duplicates, i = o, n. We assume Γo

≥ Γn by definition of the more conserved ("old") and less

conserved ("new") duplicates, respectively. Hence, the
connectivity of the most conserved duplicates decreases or
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increases as  under m successive WGDs: the case Γo <

1 corresponds to an exponential decrease of connectivity
and eventual disappearence of any given node of the net-

work. By contrast, the case Γo > 1 corresponds to a connec-

tivity increase of the "old" duplicate descents and, hence,
to an overall conservation of the PPI network in the course
of evolution under WGDs, see below and Discussion.

Strikingly, it can be shown that this simple criteria on Γo

governs not only the evolutionary conservation but also
the topology of the emerging PPI networks under WGDs,
see Methods for detailed proof. The different evolutionary
regimes and asymptotic degree distributions, pk, are sum-

marized in the phase diagram Fig. 3A in the plane (Γo +

Γn,Γo - Γn). Each axis of this phase diagram has a simple,

biologically relevant interpretation: Γo + Γn is the global

growth rate of the network in terms of number of interac-

tions (Γo + Γn > 1 to ensure a growing network) and Γo - Γn

corresponds to the divergence asymmetry between dupli-
cated proteins. We outline here the two main evolutionary
regimes of the model and discuss their biological rele-
vance (see Methods for proof details).

• Non-conserved, exponential regime

The case Γo < 1 (and Γn < 1) implies an exponentially

decreasing degree distribution, pk ∝ exp(-μk) for large k Ŭ

1, corresponding to a regular, infinitely derivable generat-
ing function, p(x). From an evolutionary perspective, we
find that this exponential topology arises while the links
emerging from each node (Fig. 2) are more likely lost than

duplicated at each round of global duplication (as Γi = γ +

γi < 1 is equivalent to δδi > γγi). This implies that most

nodes eventually disappear, and with them all traces of
network evolution, after just a few rounds of global dupli-
cation. The network topology is not conserved, as antici-
pated above, but instead continuously renewed from
duplication of the (few) most connected nodes. From a
speciation perspective, this implies that all nodes of a
given PPI network realization are eventually more closely
related to one another than to any other node of a differ-
ent PPI network realization, i.e. from a different species.
Clearly, this class of evolutionary non-conserved PPI net-
works doest not appear to be biologically relevant, given
the typical degree of conservation between orthologous
proteins across living kingdoms. As a consequence, we can
also conclude from the phase diagram Fig. 3A that expo-
nential PPI networks arising through genome duplication
would necessary correspond to non-conserved networks

and would thus be presumably irrelevant from a biologi-
cal perspective. This result actually holds, beyond genome
duplication, for evolutionary duplication-divergence
dynamics at any genomic scale (from single gene to whole
genome) and even with variations in all evolutionary

parameters  at each duplication-divergence process

n, see Discussion. Hence, only non-exponential topolo-
gies of PPI networks are likely to be observed in nature.
This corresponds to the second regime discussed below.

• Conserved, scale-free regime
The case Γo > 1 > Γn implies a "scale-free" topology with a
power law decrease of the node degree distribution pk ∝ k-

α-1, for large k Ŭ 1. This corresponds to a singular, non-
infinitely derivable generating function, p(x), with the fol-
lowing asymptotic expansion in the vicinity of x = 1,

p(x) = 1 - A1(1 - x) - ... - Ar(1 - x)r - Aα (1 - x)α - ...
(3)

where r ≥ 1 is an integer and α > 1 the solution of the fol-
lowing characteristic equation (with r ≤ α <r + 1),

When  for exactly some integer r ≥ 1

the last term in Eq. 3 should be replaced by (1 - x)r ln(1 -
x), and the limit degree distribution decreases like k-r-1 (see

"exponent" lines in Fig. 3A for α + 1 = 2, 3, 4, ...). Hence,
from an evolutionary perspective, we find that scale-free
degree distributions emerge under successive, global net-
work duplications only if the "old" node copies have their
links more likely duplicated than lost at each round of

global duplication (as Γo = γ + γo > 1 is equivalent to γγo >

δδo). Thus, "old" nodes statistically keep on increasing

their connectivity once they have emerged as "new" nodes
by duplication. This implies that most nodes and their
surrounding links are conserved throughout the evolution
process, thereby ensuring that local topologies of previous
networks remain embedded in subsequent networks.
Hence, the evolutionary conservation and scale-free
topology of PPI networks appear intrinsically linked
under genome duplication. Evolutionary conservation,
which is a fundamental property of proteins and PPI net-
works (see e.g. Fig. 1) is shown to necessary lead to scale-
free PPI network topologies. It is, in fact, a very general
and fundamental result that is not sensitive to variations in

the model parameters  on the evolutionary time

scale n and also holds for duplication-divergence events at

k mΓo

{ }( )γ i
n

Γ Γ Γ Γn o n o
α α+ = + (4)

Γ Γ Γ Γn o n o
r r+ = +

{ }( )γ i
n
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any genomic scale from single gene to whole genome
duplication (see Discussion). In other words, scale-free
topologies of PPI networks appear to be a simple conse-
quence of the evolutionary conservation of PPI networks
and their underlying proteins.

In summary, whole genome duplication with asymmetric
divergence of duplicated proteins leads to the emergence
of two main classes of PPI networks : i) PPI networks with
an exponential degree distribution and without protein
nor topology evolutionary conservation and ii) PPI net-
works with a scale-free limit degree distribution and pro-
tein conservation together with at least some local
topology conservation. All other evolution scenarios are
unlikely to model biologically relevant cases; they corre-
spond either to an exponential disappearance of the
whole PPI network (i.e. if Γn + Γo < 1) or to an exponential
shift of all proteins towards higher and higher connectivi-
ties, i.e. dense regime in Fig. 3A, see Methods and [47].
Note, in particular, that the evolution of PPI networks
with symmetric divergence under WGD, i.e. Γo - Γn = 0 in
Fig. 3A, cannot lead to biologically relevant, conserved PPI
networks with scale-free topology; Indeed, WGD followed
by symmetric divergence of duplicated genes leads either
to non-conserved exponential PPI networks (for 1 < Γo +
Γn < 2) or to nonstationary dense PPI networks (for 2 < Γo
+ Γn). Besides, the same conclusion applies for an alterna-
tive model of PPI network evolution under WGD and
"link complementation", see additional file 1. Hence,
asymmetric divergence of duplicated genes under WGD is
required to obtain a (non-dense) conserved PPI networks.
Yet, we will argue, below, that such divergence asymmetry
arises, in fact, spontaneously at the level of protein-bind-
ing domains. This will support a refined model of PPI net-
work evolution in terms of protein domains rather than
entire proteins.

Fitting PPI network data with a one-parameter model

Scale-free degree distributions have been widely reported
for large biological networks and other exponentially
growing networks like the WWW. We showed in the pre-
vious discussion that scale-free limit degree distributions
require an asymmetric divergence of duplicated proteins

(Γo - Γn = γo - γn > 0) which corresponds to the probability

difference between conservation of old interactions (γo)

and coevolution of new binding sites (γn). The expected

range of parameters for actual biological networks is 1 �
γo Ŭ γ Ŭ γn � 0; In particular, the most conservative (γo =

1) and least correlated (γn = 0) evolution scenario corre-

sponds to the strongest divergence asymmetry between

duplicated proteins (Γo - Γn = 1, upper border on Fig. 3A).

The condition γo = 1 ensures that not only local but also

global topologies of all previous networks remain embed-
ded in all subsequent networks. This model is effectively a

one-parameter model (γ) for PPI network evolution
through whole genome duplication. It converges towards
a stationary scale-free limit degree distribution pk ~ k-α-1

with 0 <α < 2 for 0 <γ < (  - 1)/2 and generates non-

stationary dense networks for (  - 1)/2 <γ < 1 [47]. We

used this one-parameter model to fit both the degree dis-
tribution (Fig. 3B) and the average connectivity of first
neighbors (Fig. 3C) for direct physical interaction data of
S. cerevisiae taken from two databases, BIND [38] and
MIPS [39]. BIND data mainly comes from high through-
put two-hybrid techniques, while MIPS data is primarily
based on hand curated, litterature references (with pre-
sumably fewer nonspecific spurious interactions). The

predicted asymptotic regime is in fact approached for k ≤
20 due to the finite size of Yeast PPI network. Note, in par-
ticular, that both scale-free degree distribution (Fig. 3B)
and protein hub repulsion (so-called network "disassorta-
tivity" [42,50], Fig. 3C) are simultaneously predicted with a

single fitting parameter γ = 0.26. This corresponds to a

fixed growth rate Γo + Γn = 1 + 2γ = 1.52 (i.e. the number

of links and nodes increases by 52% at each global dupli-
cation).

Adding and removing up to 30% of links randomly, or

drawing γ from a uniform distribution between 0 and
0.52 (with average  = 0.26) yield remarkably similar fits

(not shown) to the experimental data. This reveals a large
insensibility to false- positive and negative noises and

fluctuations in γ (as long as the non-stationary dense
regime is avoided, Fig. 3A). The fixed (or averaged) growth
rate of 52% at each round of global duplication is enough
to generate networks of the size of S. cerevisiae starting
from a few interacting "seeds" after about 20 global dupli-
cations (i.e. 1.5220 = 4334 times more nodes with an aver-
age of one global duplication per 200 MY for 4BY). Such
scenario is not a priori incompatible with experimental
data, as we only have clear records on global duplications
dating back up to 400–500 MY ago (i.e. only 10 to 20% of
life history). Yet, these records suggest that "recent" whole
genome duplications might be more frequent (every
100–150 MY) and more selective (growth rates between
10 and 25%). [Indeed, ciona, 16,000 genes, and human,
~25,000 genes, (resp. tetraodon, ~22,000 genes) differ by
two (resp. three) whole genome duplications; this corre-
sponds to an averaged growth rate of 25% (resp. 11%)

5

5

γ
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including local duplications [49], i.e. (25/16)1/2 = 1.25
(resp. (22/16)1/3 = 1.11).] We will show, however, below,
that this discrepancy is essentially resolved by redefining
PPI network evolution in terms of protein binding
domains instead of entire proteins. This will also provide
a theoretical framework to account for both direct and
indirect protein-protein interactions within multiprotein
complexes.

Direct vs indirect protein-protein interactions
The protein-protein interactions we have considered so far
correspond to direct physical contact between protein pairs
derived, for instance, from two-hybrid expression assays
[56]. However, we expect from the proposed scale-free fit
of the degree distribution (Fig. 3B) that the underlying PPI
network has conserved not only pairwise interactions dur-
ing evolution but also some level of network topology
(see above). The emergence of locally conserved topology
in PPI network evolution leads "naturally" to conserved
associations or "modules" between multiple proteins [57-
61] and, beyond, to recurrent "motifs" across different
types of biological networks [62-71].

In fact, many biological functions are known to rely on
multiple direct and indirect interactions within protein
complexes. Moreover, the combinatorial complexity of
multiple-protein interactions is likely responsible for the
remarkable diversity amongst living organisms [72],
despite their rather limited and largely shared genetic
background (i.e. a few (ten) thousands genes built from a
few hundreds families of homologous protein domains
[18-20,73,74]).

High-throughput studies using affinity precipitation
methods coupled to mass spectroscopy [75-77] have pro-
posed some 80,000 direct and indirect protein interac-
tions for S. cerevisiae (raw data) and similar data are now
becoming available for several other species.

Yet, from a theoretical point of view, the evolution of indi-
rect interactions is expected to depend not only on locally
conserved network topology but also on the actual "com-
binatorial logic" between direct interactions [78,79]. This
cannot be readily defined on traditional PPI network rep-
resentation (e.g. Fig. 2) and requires a somewhat more
elaborate model as we now discuss.

Redefining PPI network evolution in terms of protein 
domains
Indirect protein interactions reflect the occurence of simul-
taneous direct interactions within protein complexes. This
requires that some proteins have more than one binding
sites to simultenaously interact with several protein part-
ners. Indeed, proteins with a single protein-binding site

can only bind to one partners at a time, underlying a sim-
ple "XOR"-like combinatorial logic. By contrast, proteins
with several protein-binding sites greatly increase the
combinatorial complexity of biological processes (like
gene regulation or cell signaling) by adding "AND" oper-
ators to the computational logic between multiple direct
interactions.

In addition, we note that binding sites are likely the pri-
mary source of asymmetric divergence in PPI network
evolution, as mutations on a shared binding site will gen-
erally affect the interactions with all its binding partners
(Fig. 2) and not just a random subset of them (Fig. S1).
Hence, asymmetric divergence of binding site duplicates
"naturally" results from "spontaneous symmetry break-
ing" due to the intrinsic evolutionary coupling of interac-
tions sharing a common binding site. Yet, this argument
of spontaneous symmetry breaking only applies to indi-
vidual binding sites, not to entire proteins. Indeed, while
the divergence of individual binding sites should be
inherently asymmetric, this does not have to be the case a
priori at the level of entire proteins with multiple binding
sites. This is because, in principles, distinct binding sites of
a protein are not necessarily coupled, thereby enabling
them to evolve somewhat independently and to eventu-
ally lead, after gene duplication, to a partition of the most
conserved binding site copies between each protein dupli-
cates (i.e. this amounts to a "subfunctionalization"
between duplicated genes, see additional file 1). Struc-
tural independence of binding sites is expected, in partic-
ular, for proteins with multiple binding sites located on
different protein domains. In this case, the evolutionary
symmetrization of multidomain proteins should even be
further enhanced by extensive shuffling of protein
domains over broad evolutionary scales [19]. Yet, we will
demonstrate below that even a strong symmetrization of
protein divergence at the level of protein domains, corre-
sponding to a complete random shuffling of protein
domains, is not suffcient to prevent the emergence of scale-
free PPI networks, by constrast to predictions for symmet-
ric models at the level of individual interactions (see dis-
cussion above and Fig. S1 in addtional file 1).

In the following, we propose to highlight this central role
of protein domains in the evolution of PPI networks by
simply redefining our initial asymmetric divergence
model (Fig. 2) in terms of protein-binding domains, and
assuming at first a single protein-binding site per protein-
binding domain, as illustrated in Fig. 4A (see however
Discussion). In particular, the normalised generating
function p(x) introduced previously, Eqs.(2,3), now corre-
sponds to the connectivity distribution of individual pro-
tein-binding domains, instead of entire proteins. This
alternative representation of PPI networks provides a the-
oretical framework to model the evolution of the combi-
Page 9 of 18
(page number not for citation purposes)



BMC Systems Biology 2007, 1:49 http://www.biomedcentral.com/1752-0509/1/49
natorial logic underlying PPI networks, as it distinguishes
mutually exclusive, direct interactions ("XOR") between
protein domains (Fig. 4A, black solid lines) from cummu-
lative, indirect interactions ("AND") within multi-protein
complexes (Fig. 4A, red dashed lines).

Combining whole genome duplication and extensive 
domain shuffling
As noted in the introduction, whole-genome duplications
is thought to promote efficient shuffling of multi-domain
proteins by enabling many accretion and deletion events
of functional domains after each genome doubling. In
fact, we will assume in the following that the overall shuf-
fling of multi-domain proteins is so efficient that protein
domains encoded along the genome are effectively ran-
domly shuffed over long evolutionary time scales, e.g. > 500
MY-1 GY, as suggested by the different multi-domain
combinations typically observed across distant living
kingdoms [19]).

Indeed, our aim, here, is not to model the fine details of
domain shuffling events on short evolutionary time
scales, but instead to check the robustness of PPI network
scale-free topology against the extensive shuffling of pro-
tein domains that effectively occurs over long evolution-
ary time scales. Assuming a random shuffling of
individual protein domains implies that their evolution-
ary dynamics is ultimately averaged over a long series of
single- and multi-domain proteins. Hence, the integrated
connectivity of individual protein domains can be
assumed to have evolved independently from their current
position inside a specific single- or multi-domain protein.
Besides, a more elaborate model of protein evolution
detailing domain accretion and deletion events leads to
virtually identical asymptotic results (not shown).

Assuming a random shuffling of independent protein
domains over long evolutionary time scales is also a more
stringent condition with regards to the robustness of PPI
network topology against domain shuffling events. The
overall topology of PPI networks is expected to be a force-
riori less affected by actual domain shuffling events.

Finally, the assumption of random shuffling of independ-
ent protein domains is simple enough to be amenable to
an exact mathematical extension of the initial model
neglecting multidomain protein structures. Indeed, in the
asymptotic limit, the generating function for the connec-
tivity distribution of the global multidomain protein net-

work, (x), can be derived a posteriori by reconstructing

multidomain proteins from a poissonian linking of suc-
cessive protein domains whose connectivies are character-

ized by the generating function p(x) = ∑k≥1pkxk and

randomly distributed along the genome. Hence, pk is the

probability to find a protein domain with connectivity k
at a given location along the genome. We introduce a new

parameter λ, corresponding to the probability to form a
covalent connection between successive protein-binding
domains encoded along the genome. Then, the respective
contributions of single, double, triple domain proteins to

the overall multidomain generating function (x)

become, p(x)(1 - λ), p(x)λp(x)(1 - λ), p(x)λp(x)λp(x)(1 -

λ), etc, to account for the probability to find a given multi-
domain protein whose global connectivity is summed

over its individual domains, e.g., pkλpk'(1 - λ), with global

connectivity k + k'.

Hence, summing over all possible multidomain proteins

finally yields for the overall generating function (x) =

p(x)(1 + λp(x) + λ2p2(x) + ...)(1 - λ),

Although non-protein-binding domains are omitted here
for simplicity, they can readily be taken into account by
including a fraction of disconnected, non-protein-binding
domains in p(x). Eq. (5) implies, in particular, an expo-
nential distribution of multi-domain proteins, in agree-
ment with actual distributions [80,81], with an average of

1/(1 - λ) protein-binding sites per protein. While p(x) now
reflects the independent evolution of single protein-bind-
ing domains, Eq. (5) shows that it also controls the
asymptotic properties of the derived multi-domain net-

works (x); in particular, for biologically relevant cases

with Γo > 1 > Γn, we obtain from Eq. (3) the following

asymptotic expansion in the vicinity of x = 1,

which implies that degree distributions of multi-domain

protein networks k increase with respect to the underly-

ing single-domain interaction network pk as k ~ pk/(1 - λ)

for large k, while the fraction of proteins with a single

binding partner 1 decreases at the same time as 1 =

'(0) = (1 - λ)p'(0) = (1 - λ)p1 (see Fig. 4B). From a bio-

logical perspective, note that the scale-free degree distribu-
tion of such multi-domain protein networks results from
an asymmetric divergence of individual binding sites (or
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domains) rather than an asymmetric divergence of global
protein architectures. This has also biological conse-
quences for the functionalization of duplicated genes (see
additional file ). In particular, random (symmetric) "sub-
functionalization" between protein duplicates at the level
of protein domains does not prevent the emergence of
scale-free networks with locally conserved topology, by
contrast to random link "complementation" at the level of
individual interactions (Fig. S1) which leads to exponen-
tial networks without conserved topology (see Supporting
Information).

Hence, domain shuffling of multi-domain proteins pro-
vides a powerful, yet non-disruptive source of combinato-
rial innovation, as it preserves essential topological
features inherited from the underlying protein-domain
interaction network evolution.

Finally, comparison with experimental data sets including
indirect protein-protein interactions [75-77] is made by
adopting a statistical implementation of the "combinato-
rial logic" discussed above (see Supporting Information).
It is based on a Dijkstra algorithm that estimates the rela-
tive importance of all possible indirect interactions
between multi-domain (and single-domain) proteins for
each PPI network realization. Figs. 4B &4C show rather
good fits of experimental data sets corresponding to an
estimated 30% to 60% coverage of actual PPI networks
[75-77] (see, however, Supporting Information). The two
adjusted parameters, γ = 0.1 and λ = 0.3, correspond to a
network growth rate of 20% (i.e. 1 + 2γ) and an average of
1.5 (i.e. 1/(1 - λ)) protein-binding sites (domains) per
protein in agreement with broad estimates for these bio-
logical parameters (see above and [80,81]). This also con-
firms that the properties of PPI networks we have
predicted from first principles (i.e. i) exponential dynam-
ics and ii) symmetry breaking) are already transparent
from partial data sets.

Discussion
In this paper, we establish the statistical consequences of
successive whole genome duplications and divergence
asymmetry between gene duplicates on both i) evolution-
ary conservation and ii) emerging topological properties
of PPI networks. The evolutionary dynamics of non-con-
served networks implies that all evolutionary traces are
erased exponentially fast from the network and its under-
lying genome over typical WGD time scales (e.g. 100 MY).
Hence, evolutionary conserved networks are presumably
the only biologically relevant PPI networks that may arise
through whole genome duplications. We have also dem-
onstrated that they necessarily present a scale-free topol-
ogy that is robust to extensive domain shuffling of their
multiple domain proteins.

Other evolutionary processes than WGD and domain
shuffling have not been included in the main text above,
for simplicity. Yet, additional PPI network features can
also be taken into account. We have investigated, in par-
ticular, the roles of 3 additional well-documented features
of PPI network evolution, which we discuss below. They
are i) protein homo-oligomerization, ii) protein domains
with multiple binding sites and, finally, iii) other duplica-
tion-divergence events at smaller genomic scale than
entire genome (i.e. from single gene to partial genome
duplication). Yet, we have found that none of these addi-
tional PPI network features significantly affect the general
conclusions of the present study.

• i) Protein homo-oligomerization
The possibility of protein homo-oligomerization can be
explicitly taken into account by introducing 2 types of
nodes corresponding respectively to i) self-interacting
proteins with self-link loops and ii) non-self-interacting
proteins without self-link loops, see Fig. S2 and Support-
ing Information. Available data on PPI networks reveals
that about 10 to 15% of interacting proteins are self-inter-
acting [38,39]. Empiral evidence have also been reported
on the higher overall connectivity and interconnectivity of
homodimer proteins in PPI networks [82]. In principle,
the detailed evolution of PPI network conservation and
topology is affected by self-link loops which provide a
source of duplication-derived de novo interactions
between "old" and "new" copies of duplicated self-inter-
acting proteins, Fig. S2. However, the general conserva-
tion and topological properties of PPI networks turn out
to be little affected by the presence of self-link loops, in
the asymptotic limits of large PPI networks and large node
degrees (see Supporting Information for detailed proof).
In a nutshell, this is because conservation and topology of
PPI networks are controlled by the exponential increase of
their node degrees while the contribution of de novo inter-
actions arising from duplicated self-interacting proteins
can at most lead to a linear increase of node degrees, with
a maximum increment of +1 link per duplication event
and protein. Thus, although an abundance of self-interact-
ing proteins would significantly affect the evolution of
low connectivity proteins, it could not lead to a change of
topological regimes for the highly connected nodes of the
PPI networks (e.g. from exponential to scale-free node
degree distribution or vice versa). Hence, to a first approx-
imation, self-interacting proteins can be simply ignored to
establish the asymptotic conservation and topology
regimes of PPI network evolution, as we have done in the
main text and Fig. 3A. Note, however, that the actual
power law exponents of scale-free node degree distribu-
tions might nonetheless be affected by de novo interactions
arising from duplicated self-interacting proteins (see Sup-
porting Information for details). In addition, self-link
loops might also be important for the evolution of certain
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network motifs whose initial emergence might precisely
depend on the presence of self-interacting proteins (e.g.
the triangle motif unless one triangle at least is already
present in the initial network).

• ii) Protein domains with multiple binding sites
The possibility of having protein interfaces involving
more than two proteins at a time (e.g., the hetero-trimeric
fibrinogen) is not currently included in the model. Actu-
ally, the average number of binding sites per protein-
binding domains is around 1.3, with about 80% of pro-
tein-binding domains having a single binding site [83]
(except for self-interacting domains forming homo-oligo-
meric self-assemblies, which require, as expected, at least
2 binding sites, see table 2 in [83].) Yet, in principle, the
evolution of protein-binding domains with multiple
binding sites can be taken effectively into account, at least
numerically, by introducing a strong physical correlation
between successive single-binding-site "domains". How-
ever, we want to stress that our main results regarding pro-
tein-binding domains do not concern nor rely on the
detailed evolutionary correlation of binding sites and
domain shuffling mechanisms. Indeed, by assuming only
single-binding-site domains, we have demonstrated that
even the most extensive shuffling of binding site/domain
orders, implying the loss of all correlation along the pri-
mary sequence, does not qualitatively affect the general
conservation and topological properties of emerging PPI
networks under whole genome duplications. Hence, it is
quite clear and confirmed by simulations (not shown)
that introducing physical correlation between successive
binding sites/domains has a forceriori even less effect on
the general evolutionary regimes, we have predicted
above.

• iii) Duplication-divergence events at smaller genomic 
scales

Finally, beyond whole genome duplication, duplication-
divergence events are also known to occur at smaller
genomic scales from single gene to partial genome dupli-
cation. Moreover, local duplications/deletions may also
lead to exponential dynamics of PPI network evolution if
they are selected independently in parallel. A general
model for PPI network evolution under duplication-
divergence processes at any genomic scale (from single
gene to whole genome) and allowing also for variations in

all evolutionary parameters  over evolutionary time

scale n is presented in ref [47]. It confirms and generalizes
the conclusions of the present study focussing on whole
genome duplications.

Interestingly, recent evolutionary records (< 500 MY) for
specific eukaryotes from various kingdoms, e.g. [23,33],

suggest that whole genome duplications have been a sig-
nificant factor in the overall expansion of ancestral
genomes [23,33], while local duplications have been
mainly responsible for the expansion of specific gene fam-
ilies. It will be interesting to see whether this is a general
trend or not as new complete eukaryote sequences will
become available.

This difference in typical selection pattern of gene dupli-
cates from either whole genome or local duplications may
possibly reflect their opposite dosage effects on cellular
activity and ultimately correspond to two evolutionary
paradigms reminiscent to Monod's "chance and neces-
sity" principles [84]. Indeed, random local duplications of
essential genes are thought to be generally detrimental by
the dosage imbalance they initially induce, thereby raising
the odds for their rapid nonfunctionalization [85-87],
unless they specifically happen to be beneficial under con-
comitant environmental changes [51]. Hence, the typical
fate of random local duplications might be primarily
driven by immediate "necessity" rather than "chance" and
eventually lead to the expansion of specific gene families
through series of beneficial local duplications. By con-
trast, rapid nonfunctionalization of duplicates following a
whole genome duplication should be typically opposed
by dosage effect, in particular, for highly expressed genes
and for genes involved in multiprotein complexes or met-
abolic pathways [33]. This is because whole genome
duplications initially preserve correct relative dosage
between expressed genes, while subsequent random non-
functionalizations disrupt this initial dosage balance.

Preventing rapid asymmetric divergence between dupli-
cates from recent whole genome duplications appears, in
the end, to increase their chance of neo- or subfunctional-
ization by favoring longer genetic drift rather than early
functional loss. Hence, by contrast with local duplica-
tions, the typical fate of gene duplicates under whole
genome duplication might be largely driven by (long
term) chance rather than (immediate) necessity. It is also
reflected in the random pattern of reciprocal gene loss
associated with multiple speciation events that typically
follow a whole genome duplication [13,21]. This preva-
lence of chance over necessity following whole genome
duplications further supports the stochastic and statistical
framework we have adopted here to model the evolution
of PPI networks under whole genome duplication.

Conclusion
In this paper, we argue that, large scale topological fea-
tures of PPI networks emerge spontaneously in the course
of evolution under simple duplication/deletion events
[45], regardless of the specific evolutionary advantages
individual proteins might have been selected for. While
other selection drives than mere protein domain conser-
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vation might have also played a role, they do not appear
to have been necessary nor prevailing factors to shape the
large scale topology of PPI networks. For instance, the
repulsion of protein hubs into largely independent net-
work modules (i.e. the so-called network "disassortativ-
ity" property [42,50]) is predicted here (Figs. 3C &4B)
without any specific selection pressure being ever invoked
in favor of such network motifs. Yet, we showed that the
exponential dynamics of PPI network evolution under
genome duplication requires an asymmetric divergence of
protein duplicates. Such asymmetric divergence arises,
however, "naturally" at the level of protein-binding sites
or domains (through "spontaneous symmetry breaking")
and is robust to extensive domain shuffling of multi-
domain proteins.

From a more general perspective, the context of accelerat-
ing genome sequencing projects calls for a broader and
inevitably more statistical understanding of biological
network evolution, beyond the accumulation of details
for particular evolutionary transitions of specific species.
The analysis of PPI networks over broad evolutionary
scales can only be based on a few well-established evolu-
tionary mechanisms shared across a wide variety of organ-
isms. As novel whole genome duplications are now
routinely discovered in newly sequenced eukaryote
genomes, e.g. [23,33], it is clear that these rare but dra-
matic simultaneous changes in genome content must
have had a major impact on the long time scale evolution
of eukaryote genomes and, hence, resulting biological
networks. This study demonstrates the expected biological
implications of such successive genome duplications in
terms of both conservation and topology of PPI networks.
In particular, it shows from first principles, that scale-free
topologies of PPI networks are a simple consequence of
their evolutionary conservation. It also highlights the
importance and origin of the divergence asymmetry
between gene duplicates, as well as the overall robustness
of the resulting scale-free topology to domain shuffling of
multi-domain proteins.

Method
Mathematical solution of the model

Our formal approach is based on the use of generating
functions to capture the statistical properties of emerging
PPI networks under WGD. In particular, the generating

function of the average number of protein nodes � �

with k binding partners after n WGD steps is defined as,

As discussed in Results, a general model for PPI network
evolution under WGD allows for an asymmetric diver-

gence of duplicated genes, Fig. 2. Hence, each WGD step
(n) → (n + 1) corresponds to the following functional
recurrence between consecutive generating functions F(n)

and F(n + 1),

F(n+1)(x) = F(n)(An(x)) + F(n)(Ao(x)) (8)

where Ai(x) = (γx + δ)(γix + δi), for i = n, o and, γ, γn and γo
[resp. δ, δn and δo] correspond to the probabilities to pre-
serve [resp. delete] the duplication-derived interactions
between "old" and "new" duplicated nodes, as depicted in
Fig. 2. The functional recurrence Eq. 8 is derived as fol-
lows. Since each node is initially duplicated, F(n+1)(x),
which essentially counts the number of nodes according
to their degree k ≥ 0, is the sum of two F(n)(x) correspond-
ing, respectively, to the "old" and "new" nodes in the
duplicated network. The variable x in F(n)(x), whose suc-
cessive powers xk essentially count the number of links (k)
around each node of degree k, should then be replaced by
x2 (since each node degree can at most double) and even-
tually be substituted as x  γix + δi, where γi [resp. δi = 1 - γi]
corresponds to the probability to keep [resp. delete] each
link emerging from each node of the duplicated graph.
Hence, at each WGD step (n)  (n + 1), the generating func-
tion recurrence for PPI network evolution with asymmet-
ric divergence of duplicated proteins becomes Eq. 8 (see
Supporting Information for proof details).

Note, that there are two types of time scales in this model
of PPI network evolution: one which is slow corresponds
to the long time decay of ancestral interactions between
"old" genes, while the other one is faster (e.g. 10–100 MY)
and corresponds to the spontaneous symmetry breaking
between "old" and "new" duplicate copies and the con-
commitant deletion of many "new" duplicates. In partic-
ular, we do not introduce distinct time scales for
spontaneous symmetry breaking and deletion of "new"
genes, since these two steps are not assumed to be distinct
phenomena but rather simultaneous processes that can-
not be formally decoupled.

The overall graph dynamics through successive global
duplications is clearly exponential as anticipated; in par-
ticular, the total number of nodes grows as F(n)(1) = A·2n,
where A is the initial number of nodes, and the number of

links scales as �L(n)� ∝ (2γ + γo + γn)n. We remove perma-

nently disconnected nodes from the list of relevant nodes,
assuming that they correspond to proteins that have in
fact lost their function and are eventually eliminated from
the genome. To this end, we redefine the graph size as,

, where  has been removed,

and introduce a normalized generating function p(n)(x) for
the mean degree distribution,

Nk
n( )

F x N xn
k
n k

k

( ) ( )( ) = 〈 〉
≥

∑
0

(7)
〈 〉 = 〈 〉≥∑N Nn

k
n

k
( ) ( )

1
〈 〉N n

0
( )
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Absolute and relative generating functions are related
through,

Inserting this expression (10) in recurrence (8) gives a

closed relation between successive (n)(x) = p(n)(x) - 1,

where Δ(n) is the ratio between consecutive numbers of
connected nodes,

Δ(n) = �N(n+1)�/�N(n)� = 2 - p(n)(δδn) - p(n)(δδo) ≤ 2. The evo-
lution of the mean degree is obtained by taking the first
derivative of (11) at x = 1,

where Γn = γ + γn =  and Γo = γ + γo =  hereafter.

For each type of node i = n, o, Γi corresponds to the aver-

age rate of connectivity change between WGDs, k → kΓi.

Hence, in particular, the connectivity of the most con-

served duplicates decrease or increase as  under m

successive WGDs: the case Γo < 1 corresponds to an expo-

nential decrease of connectivity and eventual disap-
pearence of any given node of the network. By contrast,

the case Γo > 1 corresponds to a connectivity increase of

the "old" duplicate descents and, hence, to an overall con-
servation of the PPI network in the course of evolution
under WGDs. We will now show that the same criteria on

Γo governs not only the evolutionary conservation but

also the topology of the emerging PPI networks under
WGDs.

We will limit the discussion here to degree distributions
approaching a stationary regimes p(n)(x) → p(x) with a
finite mean degree 1 ≤ p'(1) < ∞. This seems to cover the
most biologically relevant networks; for completeness,
other cases are discussed elsewhere [47]. From (12) and
the condition of finite mean degree, we readily obtain that
Δ(n) → Γn + Γo ≤ 2, which implies that the network evolu-

tion is asymptotically equivalent in terms of connected
nodes and links,

�N(n+1)�/�N(n)� → �L(n+1)�/�L(n)� = Γn + Γo (13)

This condition can be shown [47] to ensure that the evo-
lution of the ensemble average of networks (Eq. 7) indeed
reflects the "typical" evolution of PPI networks under glo-
bal duplication.

The stationary degree distribution is then solution of the

functional equation, with (x) = p(x) - 1,

which can be differentiated k times to express the kth
derivative in terms of lower derivatives,

where the coefficients αm ≡ αm(γn, γo, γ) are all positive
from the definition (9).

The finite or infinite nature of  depends on the two

parameters Γn and Γo and defines the form of the limit

degree distribution. The phase diagram Fig. 3A summa-

rizes in the plane (Γo + Γn, Γo - Γn) the different regimes for

the asymptotic degree distribution pk. Γo + Γn is the global

growth rate of the network (Γo + Γn > 1 to ensure a growing

network) and Γo - Γn corresponds to the divergence asym-

metry between duplicated proteins. We now discuss the
two main stationary regimes for pk and their biological rel-

evance in the case of Γn ≤ Γo (the case Γn ≤ Γo is deduced

by permutating indices):

• Non-conserved, exponential regime
If both Γo < 1 and Γn < 1, then,

and the factor in front of  in (15) is always strictly

positive, which implies that all derivatives of the limit
degree distribution are finite. Hence, in this case, the limit
degree distribution decreases more rapidly than any
power law (see explicit asymptotic development in [47]).
Note that this "exponential" regime occurs when the links

p x p x p
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emerging from each node (Fig. 2) are more likely lost than

duplicated at each round of global duplication (as Γi = γ +

γi < 1 is equivalent to δδi > γγi). This implies that most

nodes eventually disappear, and with them all traces of
network evolution, after just a few rounds of global dupli-
cation. The network topology is not conserved, but instead
continuously renewed from duplication of the (few) most
connected nodes. From a speciation perspective, this
implies that all nodes of a given PPI network realization
are eventually more closely related to one another than to
any other node of a different PPI network realization, i.e.
from a different species. Clearly, this class of evolutionary
non-conserved PPI networks doest not appear to be bio-
logically relevant, given the typical degree of conservation
between orthologous proteins across living kingdoms. As
a consequence, we can also conclude from the phase dia-
gram Fig. 3A that exponential PPI networks arising
through genome duplication would necessary correspond
to non-conserved networks and would thus be presuma-
bly irrelevant from a biological perspective. This result
actually holds, beyond genome duplication, for evolu-
tionary duplication-divergence dynamics at any genomic
scale (from single gene to whole genome) and even with

variations in all evolutionary parameters  at each

duplication-divergence process n, see [47]. Hence, only
non-exponential topologies of PPI networks are likely to
be observed in Nature. This corresponds to the second
regime discussed below.

• Conserved, scale-free regime

If Γo > 1 > Γn, then the factor in front of  in (15) can

become negative. However, since the generating function
should have all its derivatives positive, a negative value for
one of them means that it simply does not exist. In fact,

for Γn ln Γn + Γo ln Γo ≥ 0 (red line in Fig. 3A and [47]),

there is an integer r ≥ 1 such that,

implying that all derivatives  are finite up to the rth

order, while  is infinite. This justifies the follow-

ing asymptotic expansion of p(x) in the vicinity of x = 1,

p(x) = 1 - A1(1 - x) - ... - Ar(1 - x)r - Aα(1 - x)α - ...
(18)

for some appropriate r <α <r + 1. This anzats is then
inserted in (14) using (γx + δ)(γn,ox + δn,o) = 1 - Γn,o(1 - x)

+ γγn,o(1 - x)2 to obtain an equation on the coefficients
A1,...Ar. The term Aα does not mix with previous terms and
gives the following equation for α,

The limit degree distribution follows a power law in this
case,

pk ∝ k-α-1 (20)

When  for exactly some integer r ≥ 1

the last term in Eq. 18 should be replaced by (1 - x)r ln(1
- x), and the limit degree distribution decreases like k-r-1

(see red and blue "exponent" lines in Fig. 3A for α + 1 = 2,
3, 4, ...)

Note that scale-free degree distributions emerge under
successive, global network duplications only if the "old"
node copy has its links more likely duplicated than lost at
each round of global duplication (as Γo = γ + γo > 1 is
equivalent to γγo > δδo). Thus, "old" nodes statistically
keep on increasing their connectivity once they have
emerged as "new" nodes by duplication. From biological
perspective, this implies that most nodes and their sur-
rounding links are conserved throughout the evolution
process, thereby ensuring that local topologies of previous
networks remain embedded in subsequent networks.

In summary, whole genome duplication with asymmetric
divergence of duplicated proteins leads to the emergence
of two classes of PPI networks with finite asymptotic
degree distributions : i) PPI networks with an exponential
degree distribution and without protein nor topology evo-
lutionary conservation and ii) PPI networks with a scale-
free limit degree distribution and protein conservation
together with at least some local topology conservation.
All other evolution scenarios, which do not lead to finite
asymptotic degree distributions, are unlikely to model
biologically relevant cases; they correspond either to an
exponential disappearance of the whole PPI network (i.e. if

Γn + Γo < 1) or to an exponential shift of all proteins

towards higher and higher connectivities (i.e. dense

regime in Fig. 3A for ΓnΓo > 1) [47]. Hence, from a biolog-

ical perspective, evolutionary conservation and scale-free
topology of PPI networks are intrinsically linked under
genome duplication. Evolutionary conservation, which is
a fundamental property of proteins and PPI networks (see
e.g. Fig. 1) is shown to necessary lead to scale-free PPI net-
work topologies. It is, in fact, a very general and funda-
mental result that is not sensitive to variations in the

{ }( )γ i
n

∂ x
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model parameters  on the evolutionary time scale n

and also holds for duplication-divergence events at any
genomic scale from single gene to whole genome duplica-
tion (see [47]). In other words, scale-free topologies of PPI
networks appear to be a simple consequence of the evolu-
tionary conservation of PPI networks and their underlying
proteins.

Abbreviations
WGD : Whole Genome Duplication; PPI network : Pro-
tein-Protein Interaction network.
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