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Abstract
Background: Development of multicellular organisms proceeds from a single fertilized egg as the
combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at
least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in
reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells
themselves must possess some autonomous cell behaviors that assure specific and reproducible
self-organization. Understanding of this self-organized dynamics of heterogeneous cell population
seems to require some novel approaches so that the approaches bridge a gap between molecular
events and morphogenesis in developmental and cell biology. A conceptual cell model in a
computer may answer that purpose. We constructed a dynamical cell model based on autonomous
cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well
as cell-cell signaling. The model gives some insights about what cellular behaviors make an
appropriate global pattern of the cell population.

Results: We applied the model to "inside and outside" pattern of cell-sorting, in which two
different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type
tends to gather in the central region of the aggregate and the other cell type surrounds the first
cell type. Our model can modify the above cell behaviors by varying parameters related to them.
We explored various parameter sets with which the "inside and outside" pattern could be achieved.
The simulation results suggested that direction of cell movement responding to its neighborhood
and the cell's mobility are important for this specific rearrangement.

Conclusion: We constructed an in silico cell model that mimics autonomous cell behaviors and
applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization
of cell population. The model could predict directional cell movement and its mobility are
important in the "inside and outside" pattern of cell sorting. Those behaviors are altered by signal
molecules and consequently affect the global pattern of the cell sorting. Our model is also applicable
to other developmental processes beyond cell sorting.
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Background
The development of multicellular organisms is highly
organized in a complex spatio-temporal manner that ena-
bles an enormous number of cells to form a single indi-
vidual autonomously. These programmed processes seem
miraculous, considering that they occur in an extremely
reproducible manner that extends beyond individuals
and generations. Interestingly, certain patterns that are at
least reminiscent of morphogenesis are known to be reca-
pitulated in reaggregation cultures of dissociated cells
from embryonic tissues. For example, embryonic cells dis-
sociated from two different tissues will sort into two sep-
arate regions when cultured as a randomly mixed
aggregate of cells. This rearrangement of the cells proceeds
according to the cell's tissue origins and is reminiscent of
the original embryonic structures [1,2]. That is, randomly
mixed cells seem to reconstruct their original cellular
arrangement in response to their surroundings. Thus, cell-
sorting may provide insights into the mechanism by
which embryonic cells undergo self-organization.

To clarify which cell characteristics are important for the
highly reproducible self-organization of cells into tissues,
we focused here on a certain cell-sorting in a simple heter-
ogeneous population of two cell types – namely, the accu-
mulation of one cell type in the central region of a
randomly mixed aggregate of two different embryonic cell
types and the accumulation of the second cell type in the
area surrounding the first cell type (an "inside and out-
side" cell-sorting pattern). The "inside and outside" pat-
tern is important because this pattern reflects an original
embryonic structure [1].

For the process of cell-sorting within the aggregate, adhe-
sion properties of cells are considered as an important fac-
tor. So far, two major hypotheses have been proposed: the
"Specific Adhesion Hypothesis (SAH)" and the "Differen-
tial Adhesion Hypothesis (DAH)". The SAH explains cell-
sorting using the concept of selective affinity of cell adhe-
sion; in other words, cells of the same type gather by
adhering to each other and, conversely, the population of
a specific type of cells excludes different cell types by not
adhering to them well [3]. This adhesive relationship pre-
dicts that homophilic adhesions of both cell types are
stronger than heterophilic adhesions, as observed in
many experiments [4-8]. However, the SAH could not rea-
sonably explain the "inside and outside" configuration of
cell-sorting [9].

The DAH defines adhesion energy as a physical quantity
and explains cell-sorting using a physical law involving
the free energy minimum or adhesion energy maximum; that
is, the most energetically stable structure is formed over
time [10]. Based on the DAH, several theoretical models
have been proposed. Although the DAH predicts the

"inside and outside" pattern in a certain adhesive relation-
ship (described in the Discussion), some models did not
reproduce the "inside and outside" pattern [11-15] and
other models required additional assumptions, such as
remote interactions among cells [16-19] because of the
existence of cellular configurations that had local maxi-
mums in the total adhesion energy. Cell rearrangements
were halted at a local maximum in the energy landscape.

Remote cellular interactions are essential for certain types
of cell-sorting. In the slime mold Dictyostelium discoideum,
excitable cells move in response to a diffusive chemoat-
tractant cAMP emanated from pacemaker cells; that is, the
pacemaker cells operate remote excitable cells via diffu-
sive signals. Cell-sorting in the slime mold D. discoideum
has been vigorously studied. In model systems for the pat-
tern formation in D. discoideum, not only cell-sorting but
also collective cell movements have been successfully
described in computational experiments [20-22] and
mathematical analysis [21]. On the other hand, remote
cellular interactions during the process of cell-sorting
within the randomly mixed aggregates of embryonic cells
remains unknown. Thus, we did not assume remote cellu-
lar interactions in this study.

The above models of cell-sorting for randomly mixed
aggregates of embryonic cells were lattice models in which
a cell occupies one lattice in a finite lattice space and
moves by changing its position to a neighboring lattice.
Thus, the cell movements were discrete. Glazer and
Graner (1992) successfully reproduced the "inside and
outside" configuration of cell-sorting by constructing a
model in which cell movement was quasi-continuous
[23,24]. Models of cell-sorting with continuous cell move-
ment have also been proposed [25,26].

However, when the cellular events in developing tissues
are observed in vivo, the involvement of other aspects of
cellular behavior in pattern formation becomes apparent.
During sea urchin gastrulation, for example, the primary
mesenchymal cells migrate to prospective ventrolateral
regions of the blastocoel and fuse into syncytial cables
[27,28]. Convergent extension is a cooperative cellular
behavior that is necessary for archenteron invagination
[29]. In addition to this cooperative behavior, secondary
mesenchymal cells also assist during archenteron invagi-
nation [30,31]. In avian embryos, the trunk neural crest
cells journey long distances to their final destinations via
different pathways, depending on their region of origin in
the neural crest, and differentiate into appropriate cell
types at their final destinations [32-36]. In mammals, the
cerebral cortex arises from the migration of huge numbers
of neurons. These neurons form distinct cortical layers,
depending on their birthdates [37], and function in a
layer-specific manner. These examples indicate that each
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cell behaves individually during development, receiving
signals from its surroundings and varying its inner state
according to those signals, thereby exerting an effect on its
surroundings either individually or cooperatively or mov-
ing autonomously or en masse. In this manner, the cell
finally arrives at its proper position and begins to function
in an appropriate manner. Such cellular behaviors are
essential for development.

Based on these observations and consideration, we con-
structed an in silico cell model with a flexible shape, direc-
tional motility, and sensitivity to parameters like
autonomous cellular behaviors; we then used this model
to examine what differences in cellular behavior parame-
ters would lead to the reproducible generation of an
"inside and outside" pattern of cell-sorting. In this man-
ner, we successfully recapitulated the specific rearrange-
ment of cells observed during "inside and outside" cell-
sorting by inputting data reflecting a randomly mixed
aggregate of two different cell types. The results of these
computer simulations suggested that the directional
movement of the cells and the cell's mobility were impor-
tant for this specific rearrangement.

Results
Outline of in silico cell model
We explain our model briefly here and give a full and par-
ticular account of the model in Methods section. Our
model is on two-dimensional hexagonal lattice space.
Each cell occupies multiple hexagons in the lattice space
(Fig. 1a), with the number of hexagons occupied by a sin-
gle cell representing the cell's size. For dynamic change in
the cell's shape in response to its simulated surroundings,
cell size is variable about its standard size that is set in a
simulation. Each cell contains one hexagon that the cell
never loses; this hexagon represents the cell's "core posi-
tion." that is regarded as the position at which a cell tries

to remain in place at any given time point. This core posi-
tion is used for modeling purpose only and does not rep-
resent a specific biological entity.

If a cell is smaller than the standard cell size, the cell
attempts to occupy a hexagon nearest to its core position.
If a cell is larger than the standard size, the cell abandons
the hexagon furthest from its core position. Iteration of
these procedures makes a single cell in a free space round
(Fig. 1a). When cells are put as a cluster, an expanding cell
in the cluster causes positional conflict between its neigh-
boring cell, and a contracting cell pulls its neighboring cell
via cell adhesion (Fig. 1b). Because of these spatial inter-
actions, each cell is often distorted, and the core position
of the cell is not always at its center. If the cell shape is far
from round, the core position is shifted to an adjacent
hexagon closer to the cell's center (Fig. 1c). This shift rep-
resents a cell being pushed away from its desired position.

In addition to the spatial mechanical interaction between
cells, each cell receives signals from neighboring cells.
Here, we postulate the signals trigger autonomous direc-
tional cell movement. Each cell has two states, in stay and
in move, for cell movement. A cell in stay receives signals
from neighboring cells (Fig. 2a). The signals from differ-
ent cell types increase an inner state of the cell in stay,
while those from the same cell type as the cell in question
do not (Fig. 2b). If the inner state of the cell exceeds a
threshold, the cell in stay becomes activated and then
begins to move, changing its in stay-state into in move-
state. The cell in move continues to move for short periods
without receiving signals from neighboring cells. After the
short periods, the cell in move ceases from moving and
returns to in stay.

Modeling of cellsFigure 1
Modeling of cells. (a) A single cell with a size of 19 hexagons and a nearly round shape in a free lattice space. (b) A cell with 
a larger (21 hexagons) than standard (19 hexagons) size contracts with two other cells and "pulls" either of the two cells, which 
is "stretched" by cell adhesion. (c) A distorted cell shifts its core position in the direction indicated by the black arrow because 
its core position is far from the center of the cell's body.
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Parameters regulating cellular behaviors
Five parameters that regulate cell behaviors were defined
in this cell model. We briefly explain these parameters
here and give more details in Methods section. (1) MAXI-
MAL DISTORTION SCORE means what extent each cell
resist pressure by neighboring cells. If a cell has a large
value of MAXIMAL DISTORTION SCORE, the cell resists
mechanical conflict from neighboring cells. (2) ACTIVA-
TION THRESHOLD means insensitivity to signals from
neighboring cells. If a cell has a small value of ACTIVA-
TION THRESHOLD, the cell is easily activated by the sig-
nals from different cell types, and start moving. (3)
DRAGGING TIME means period in which cell is in move-
state after a single activation by signals from neighboring
cells. (4) SINGLE MOVING DISTANCE means change in
position in a single activation. (5) GAP PREFERENCE
means orders of preferred penetrable gaps for cell move-
ment. Cell movement is possible only for penetrating a
gap between neighboring cells. Here, we consider three
gaps as follows: gaps between 1) the same cell types, 2)
the same cell type and different cell type, and 3) the same
cell type and cavity (Fig. 3). Two different orders of pre-
ferred penetrable gaps are postulated. In the first situation
(referred to as the Hetero preference [Htr]), the preferred
gaps are selected in the following order: (1) gaps between
a cell of the same type as the cell in question and a cavity,
(2) gaps between a cell of same cell type as the cell in ques-
tion and a cell of a different cell type, and (3) gaps

Concept of autonomous cell movementFigure 2
Concept of autonomous cell movement. (a) Each cell 
has two states, in stay and in move, for cell movement. A cell 
in stay is activated by signals from different cell type, and 
begins to move, changing its state into in move-state. The cell 
in move continues to move for short periods and then ceases 
from moving and returns to in stay. (b) Idea of activation 
mechanism: The signals from different cell types increase an 
inner state of a cell in stay. If the inner state of the cell 
exceeds a threshold, the cell in stay is activated and becomes 
in move-state.

Idea of directional cell movmentFigure 3
Idea of directional cell movment. A: A green cell with a cyan-colored core position tries to move. There are several gaps 
as indicated by orange arrowheads. B: There are five possible gaps. White cell means that both cell types are possible. C: Two 
different orders of preferred penetrable gaps.
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between two cells of the same cell type as the cell in ques-
tion. In the second situation (referred to as the Homo
preference [Hm]), the preferred gaps are selected in the
following order: (1) gaps between a cell of the same cell
type as the cell in question and a cavity, (2) gaps between
two cells of the same cell type as the cell in question, and
(3) gaps between a cell of the same cell type as the cell in
question and a cell of a different cell type. When gaps with
the same priority are present, a gap to be penetrated is ran-
domly selected. It is to note that the above-mentioned
idea of activation mechanism (Fig. 2b) and both the Htr
and Hm gap preferences commonly include specific adhe-
sion properties.

Simulation results of cell sorting
The MAXIMAL DISTORTION SCORE was set at 0.45. Sev-
eral parameter sets in which ACTIVATION THRESHOLD,
DRAGGING TIME, SINGLE MOVING DISTANCE, and
GAP PREFERENCE were varied were then explored. To
classify the aggregation patterns, we defined two indexes:
CELL DISTRIBUTION RATIO (ratio of cells in the central

region to those in the peripheral region) and PERIMETER
RATIO. The definitions of them are described in Methods
section. The "inside and outside" patterns in the following
results were determined using these two indexes.

In the first series of simulations, the two cell types were
given different ACTIVATION THRESHOLD values but
DRAGGING TIME, SINGLE MOVING DISTANCE and
GAP PREFERENCE parameters were kept the same. Under
these conditions, the two cell types segregated from each
other within the aggregates during each simulation, but
the "inside and outside" configuration – where one cell
type forms a central cluster and the other cell type sur-
rounds that cluster – was not reproducibly generated
(Figs. 4, 5). When the ACTIVATION THRESHOLD and
DRAGGING TIME parameters were set at relatively small
values for either cell type, the cell type in question moved
extensively and its cluster tended to detach temporarily
from the cluster of the other cell type, generating a huge
inner cavity within the aggregate. Once the cells reached
their final configuration, the cell movements became rel-

Final configurations of aggregates of randomly mixed cells with different ACTIVATION THRESHOLDs and an Hm gap prefer-enceFigure 4
Final configurations of aggregates of randomly mixed cells with different ACTIVATION THRESHOLDs and an 
Hm gap preference. The following conditions were common to both cell types: DRAGGING TIME = {6, 10, or 30} SINGLE 
MOVING DISTANCE = 1; Hm preference. The areas of the inner cavities within the aggregates in (a), (b), (c), and (e) were 
0.484, 0.428, 0.200, and 0.535, respectively; thus, all of these aggregates exhibited SSPs according to the definition described in 
the text. Although some aggregates occasionally exhibited an ''inside and outside'' pattern of cell-sorting, this pattern appeared 
only by chance and was not observed reproducibly.
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atively modest and the huge inner cavity tended to dimin-
ish and often vanished. The detachment of the two cell
types from each other was inappropriate for the analysis
of the cell-sorting mechanism that we wished to examine
in this study. Thus, we defined this type of process as a
"separated sorting process" (SSP) (Fig. 4a,b,c,e, Fig.
5a,b,e) and decided to exclude all cases with an SSP pat-
tern from further quantitative analysis. To objectively
determine whether SSP had occurred during a simulation,
we measured the area of the inner cavity in the final con-
figuration and set the threshold for the area of an inner
cavity as 0.2. As shown in Table 1, SSP was observed for
several parameter combinations in this study.

In our next series of simulations, the two cell types were
given different DRAGGING TIME values and the other
parameters were kept the same. When GAP PREFERENCE
of both cell types was set at Htr, the "inside and outside"
pattern of cell sorting was reproducibly attained using cer-
tain parameter sets (Fig. 6c,d); however, an "inside and
outside" configuration was not obtained when the GAP
PREFERENCE of both cell types was set at Hm (Fig. 6g–l).

In the "inside and outside" configurations, the cell type
with a shorter DRAGGING TIME (shown as the light cells)
always surrounded the cell type with a longer DRAGGING
TIME (shown as the dark cells). When an ACTIVATION
THRESHOLD = 0.3 was used, all the results contained
SSPs (Fig. 6a,b,g,h).

When the cells were given different SINGLE MOVING
DISTANCE values and the other parameters were kept the
same, "inside and outside" cell-sorting was attained using
certain parameter sets in which both cell types had their
GAP PREFERENCE set at Htr (Fig. 7d). The cell type with
a larger SINGLE MOVING DISTANCE (shown as the light
cells) always surrounded the cell type with a shorter SIN-
GLE MOVING DISTANCE (shown as the dark cells).
When a DRAGGING TIME = 10 or a SINGLE MOVING
DISTANCE = 3 was used, an SSP occurred (Fig. 7a,b,c,e,f).

Although the Hm preference did not seem to contribute to
the "inside and outside" configuration under the above-
mentioned conditions, "inside and outside" cell sorting
occurred when one cell type had an Hm preference and

Final configurations of aggregates of randomly mixed cells with different ACTIVATION THRESHOLDs and an Htr gap prefer-enceFigure 5
Final configurations of aggregates of randomly mixed cells with different ACTIVATION THRESHOLDs and an 
Htr gap preference. The common conditions to both cell types: DRAGGING TIME = {6, 10, or 30}; SINGLE MOVING DIS-
TANCE = 1; Htr preference. The areas of the inner cavities within the aggregates in (a), (b), and (e) were 0.444, 0.482, and 
0.424, respectively (SSPs).
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the other cell type had an Htr preference (Fig. 8c–e). The
cell type with the Htr preference (shown as the light cells)
was always located near the center of the aggregate and
was surrounded by the cell type with the Hm preference
(shown as the dark cells). When an ACTIVATION
THRESHOLD = 0.3 and a DRAGGING TIME ≤ 10 were
used, an SSP occurred (Fig. 8a,b).

Discussion
In this study, we implemented several parameters to the
cell model, but varied only one of the four parameters,
ACTIVATION THRESHOLD, DRAGGING TIME, SINGLE
MOVING DISTANCE, and GAP PREFERENCE, for each
cell type in each simulation; all other parameters were
kept the same for all cells in the simulation.

In our first series of simulations, the ACTIVATION
THRESHOLD parameter was varied (Figs. 4, 5). The
parameter ACTIVATION THRESHOLD reflects a thresh-
old dividing the two distinct modes of cellular behavior,
in stay and in move. Recent fine quantifications of cell
spreading and other motile activities have illustrated mul-
tiple phases of cellular behavior and thresholds for phase
transitions [38-40]. Therefore, our assumption of a
threshold for cell-cell interactions is not inappropriate;
although the thresholds for the phase transitions

observed in these previous reports were also correlated
with cell-matrix interactions.

When several parameter sets with different values of ACTI-
VATION THRESHOLD for each cell type were examined,
the "inside and outside" configuration of cell-sorting
could not be reproduced. Since the high/low levels of
ACTIVATION THRESHOLD reflect the low/high sensitivi-
ties to external signals, resulting in the low/high frequen-
cies of the onset of cell movement, respectively, the
frequency of the onset of cell movement may not be
essential for the "inside and outside" configuration of cell-
sorting. These results appeared to be inconsistent with
previous findings that differences in the ACTIVATION
THRESHOLD caused the "inside and outside" configura-
tion of cell-sorting [41]. In this previous study, however, a
cell was regarded as occupying a single lattice on a hexag-
onal lattice space. When a cell became in move, the cell
always had to change position with a neighboring cell. In
other words, the cell movement was discrete, and the dis-
tance of one cell movement was equal to the diameter of
the cell causing the opposite cell movement of the neigh-
boring cell. On the other hand, the present model in this
study simulates quasi-continuous cell movement, which
resembles the cellular behaviors in vivo more than those in
the previous model. Thus, even when a cell became in

Table 1: Summary of cell arrangement patterns in the in silico aggregates

Pattern* Cases**

Inappropriate because of separated sorting process (SSP) Fig. 2a-c,e; Fig. 3a,b,e; Fig. 4a,b,g,h; Fig. 5a-c,e,f; Fig. 6a,b

Inside and outside Fig. 4c,d; Fig. 5d; Fig. 6c-e

Roughly inside and outside Fig. 4i; Fig. 6f

Others Fig. 2d: (0.774 ± 0.683, 3.059 ± 2.188) or (1.868 ± 1.095, 0.590 ± 0.517).
Fig. 2f: (1.056 ± 0.143, 0.092 ± 0.270) or (0.872 ± 0.160, 1.057 ± 0.215).
Fig. 2g: (0.684 ± 0.336, 2.203 ± 1.109) or (1.571 ± 0.616, 0.564 ± 0.302).
Fig. 2h: (0.767 ± 0.320, 2.261 ± 1.564) or (1.710 ± 1.335, 0.585 ± 0.291).
Fig. 2i: (1.364 ± 0.651, 1.295 ± 1.174) or (1.167 ± 0.687, 1.451 ± 0.996).
Fig. 2j: (1.545 ± 0.757, 0.935 ± 0.624) or (0.899 ± 0.524, 1.454 ± 0.763).
Fig. 3c: (0.552 ± 0.202, 1.751 ± 1.168) or (2.122 ± 1.046, 0.732 ± 0.337).
Fig. 3d: (0.778 ± 0.416, 2.055 ± 1.429) or (1.676 ± 1.083, 0.632 ± 0.274).
Fig. 3f: (0.622 ± 0.435, 1.954 ± 1.529) or (1.924 ± 1.064, 0.828 ± 0.559).
Fig. 3g: (0.801 ± 0.109, 1.251 ± 0.523) or (1.396 ± 0.249, 0.908 ± 0.313).
Fig. 3h: (0.775 ± 0.185, 1.692 ± 0.528) or (1.310 ± 0.281, 0.657 ± 0.263).
Fig. 3i: (1.060 ± 0.927, 1.381 ± 0.609) or (1.313 ± 0.585, 0.997 ± 0.829).
Fig. 3j: (0.976 ± 0.196, 1.060 ± 0.339) or (1.132 ± 0.256, 1.026 ± 0.318).
Fig. 4e: (0.353 ± 0.121, 3.973 ± 1.259) or (2.516 ± 0.675, 0.268 ± 0.064).
Fig. 4f: (0.521 ± 0.111, 2.444 ± 0.988) or (1.770 ± 0.434, 0.473 ± 0.193).
Fig. 4j: (0.488 ± 0.281, 3.221 ± 1.328) or (2.248 ± 0.981, 0.369 ± 0.182).
Fig. 4k: (0.345 ± 0.139, 4.957 ± 2.628) or (2.745 ± 0.820, 0.245 ± 0.103).
Fig. 4l: (0.662 ± 0.165, 2.035 ± 0.817) or (1.366 ± 0.329, 0.563 ± 0.220).
Fig. 5g: (0.374 ± 0.091, 3.650 ± 1.897) or (2.722 ± 1.498, 0.318 ± 0.111).
Fig. 5h: (0.531 ± 0.159, 3.468 ± 1.903) or (2.220 ± 1.032, 0.360 ± 0.163).

* See methods for the criteria used to define of each pattern. ** Parentheses show (average of CELL DISTRIBUTION RATIO ± S.D., average of 
PERIMETER RATIO ± S.D.), N = 6. The former parentheses are for the light cell type and the latter are for the dark cell type.
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move, the cell might not actually have been able to move,
depending on its surroundings. Although the primary
cause of the discrepancies between these two studies
remains unclear, the above-mentioned difference in the
method of cell movement may have been a critical factor.

When the DRAGGING TIME of the light cell type was ≤ 10
and that of the dark cell type was equal to 30, the "inside
and outside" configuration of cell-sorting occurred when
the ACTIVATION THRESHOLD equaled to 0.4, the SIN-
GLE MOVING DISTANCE equaled to 1, and the GAP
PREFERENCE was Htr (Fig. 6). When this pattern of cell
sorting occurred, the light cells with the shorter DRAG-
GING TIME always surrounded a cluster of the dark cells
with the longer DRAGGING TIME. Therefore, the cell type
with the higher mobility "covered" the cell type with the
lower mobility. In terms of molecular cell biology, the

DRAGGING TIME parameter might correspond to the
time required to reconstruct the cell body at a new core
position through, for example, remodeling of the actin
cytoskeleton [42] and the microtubule cytoskeleton [43]
in a coordinated manner [44-46] and rear cytoskeletal
contractility [47,48] during cell migration.

When the SINGLE MOVING DISTANCE values of the
light cell type and the dark cell type were set at 2 and 1,
respectively, the dark cells became localized near the
center of the aggregate and the light cells surrounded the
cluster of dark cells when the ACTIVATION THRESHOLD
equaled to 0.4, the DRAGGING TIME equaled to 30, and
the GAP PREFERENCE was Htr (Fig. 7). This result is con-
sistent with the results of the simulations in which the
DRAGGING TIME parameter was varied (Fig. 6), since
SINGLE MOVING DISTANCE reflects the change in posi-

Final configurations of aggregates of randomly mixed cells with different DRAGGING TIMEsFigure 6
Final configurations of aggregates of randomly mixed cells with different DRAGGING TIMEs. The common con-
ditions to both cell types: ACTIVATION THRESHOLD = {0.3, 0.4, or 0.5}; SINGLE MOVING DISTANCE = 1; GAP PREFER-
ENCE = {Htr or Hm}. The areas of the inner cavities within the aggregates in (a), (b), (g), and (h) were 0.378, 1.973, 1.675, and 
0.374, respectively (SSPs). The CELL DISTRIBUTION RATIOs of the dark cell type in (c) and (d) were 3.480 ± 0.757 (S.D.) and 
3.629 ± 1.314, respectively. The PERIMETER RATIOs in (c) and (d) were 0.100 ± 0.042 and 0.087 ± 0.051, respectively. Thus, 
(c) and (d) represented an "inside and outside" pattern. The CELL DISTRIBUTION RATIOs and PERIMETER RATIOs of the 
other figures are shown in Table 1.
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tion of a cell during a single activation and thus should be
negatively correlated with DRAGGING TIME. Indeed, the
migration speed is known to be correlated with the retrac-
tion of the rear cell body in some cell types [47,48].

DRAGGING TIME and SINGLE MOVING DISTANCE
exert direct influences on the way cells move, although
ACTIVATION THRESHOLD provides only opportunities
for cell movement. Thus, differences in mobility are
important for the "inside and outside" configuration of
cell-sorting, while differences in the frequency of the onset
of cell movement may not be critically involved, as men-
tioned in the third paragraph of this section. Therefore,
the current model was capable of distinguishing the proc-
esses of cell migration more finely than our previous
model [41].

While the three parameters mentioned above are related
to cellular motility, the fourth parameter – GAP PREFER-
ENCE – determines the direction of cell movement [49-
52]. When the light and dark cell types had Htr and Hm
preferences, respectively, the "inside and outside" config-

uration of cell sorting was attained when ACTIVATION
THRESHOLD equaled to 0.4, DRAGGING TIME equaled
to 10, and SINGLE MOVING DISTANCE equaled to 1
(Fig. 8). Interestingly, the light cells became localized in
the central region and the dark cells surrounded the clus-
ter of the light cells.

These results suggest that 1) when two cell types with the
Htr preference have different mobility from each other, or
2) when one cell type has the Hm preference and the other
has the Htr preference, the "inside and outside" pattern of
cell sorting arises. Cells with the Htr preference move so
that they push the different cell type away, keeping the
contact with the same cell type. Cells with the Hm prefer-
ence move so that they penetrate between the same cell
types as themselves. Within the aggregate, both cell types
gathered compactly in a mutually exclusive manner. This
cell "packing" reflects, as mentioned above, that both the
Htr and Hm gap preferences commonly included specific
adhesion properties.

Final configurations of aggregates of randomly mixed cells with different SINGLE MOVING DISTANCEsFigure 7
Final configurations of aggregates of randomly mixed cells with different SINGLE MOVING DISTANCEs. The 
common conditions to both cell types: ACTIVATION THRESHOLD = 0.4; DRAGGING TIME = {10 or 30}; GAP PREFER-
ENCE = {Htr or Hm}. The areas of the inner cavities within the aggregates in (a), (b), (c), (e), and (f) were 2.597, 0.834, 1.564, 
1.352, and 1.420, respectively (SSPs). The CELL DISTRIBUTION RATIO and PERIMETER RATIO of the dark cell type in (d) 
were 3.948 ± 1.611 (S.D.) and 0.099 ± 0.082, respectively.
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Although the "inside and outside" pattern is important, as
it is reminiscent of the original embryonic structures, the
SAH model could not reasonably explain the "inside and
outside" pattern as described in the Background section
[9]. This has been the major weakness of the SAH model.
Our present model overcomes this weakness in the SAH
because it successfully recapitulated the "inside and out-
side" pattern based on the SAH.

On the other hand, the DAH model can also explain the
"inside and outside" pattern. When one homophilic
adhesive relationship (for example, between A and A) is
strongest, the other homophilic adhesive relationship (for
example, between B and B) is weakest, and a heterophilic
adhesion (between A and B) is intermediate, the DAH pre-
dicts that these conditions are sufficient to generate the
"inside and outside" configuration of cell-sorting [10].
Although early versions of the DAH model could not
reproduce the "inside and outside" pattern, the Glaizer's
model, at last, reproduced the "inside and outside" pat-

tern excellently based on the DAH [23,24]. However,
when both homophilic adhesions are stronger than the
heterophilic adhesion, which corresponds to the "specific
adhesive relationship", the DAH model predicts that the
"inside and outside" configuration of cell-sorting does not
occur. In the above Glazer's study (1992, 1993), this "spe-
cific adhesive relationship" was not examined. Thus, we
reproduced their model (Additional files 1, 2), examined
the final configurations of cell-sorting, and confirmed that
the "inside and outside" configuration was not attained
under the "specific adhesive relationship" with the DAH
model (Additional File 3).

Although our model illustrated that the "inside and out-
side" pattern of cell-sorting is generated under a specific
adhesive relationship, vectorial cellular movement in
response to a cell's surroundings is indispensable and
reflects a part of the characteristics of specific adhesion.
We assumed that practically all the cells in multicellular
organisms utilize this autonomous cell motility for mor-

Final configurations of aggregates of randomly mixed cells with different GAP PREFERENCEFigure 8
Final configurations of aggregates of randomly mixed cells with different GAP PREFERENCE. The common con-
ditions to both cell types: ACTIVATION THRESHOLD = {0.3 or 0.4}; DRAGGING TIME = {6, 10, or 30}; SINGLE MOVING 
DISTANCE = 1. The areas of the inner cavities within the aggregates in (a) and (b) were 2.597 and 0.834, respectively (SSPs). 
The CELL DISTRIBUTION RATIOs of the light cell type in (c), (d) and (e) were 5.274 ± 2.402 (S.D.), 8.132 ± 3.406, and 5.326 
± 1.281, respectively. The PERIMETER RATIOs in (c), (d) and (e) were 0.077 ± 0.059, 0.061 ± 0.056 and 0.077 ± 0.058, respec-
tively.
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phogenesis during development. Morphogenesis is so
dynamic that passive mechanisms such as static affinities
and surface tension, are likely to be insufficient. Autono-
mous cell movement is common in the modeling of the
slime mold Dictyostelium discoideum, since chemotaxis
seen in D. discoideum is obvious as autonomous cell
movement. In the theoretical study of D. discoideum, a
diffusive signal is important and intercellular signaling is
generally neglected. On the contrary, our model includes
intercellular signaling and excludes diffusive signaling.
Thus, our model and the models of D. discoideum are
complementary for the modeling of morphogenesis dur-
ing development.

Then, what molecular mechanisms could play an impor-
tant role in the autonomous cell movement in our model?
Members of the cadherin family are well known as specific
cell-cell adhesion molecules [53,54] and may be the can-
didates supporting the cell behavior that was predicted in
this study. Cadherins are known to play important roles in
various developmental processes [55-58]. One of the
functions of cadherins is the control of cell motility
[57,59-62], which may be consistent with the findings
obtained in this study. Moreover, cells with different exog-
enous cadherin expression patterns undergo cell-sorting
[63]. Takeichi (1991) proposed a mechanism of intercel-
lular signaling via the activity of cadherins during mor-
phogenesis [64]. Niessen and Gumbiner (2002) showed
that neither the static affinities of the extracellular
domains of cadherins nor the adhesion of cells expressing
one type of cadherin to sheets of extracellular domains of
each cadherin determined cadherin-mediated cell sorting.
Rather, the interactions between cells expressing each type
of cadherin were important for the cell sorting [65].
Recently, several studies have shown that cadherin-medi-
ated cell adhesion regulates actin assembly [66,67] and
microtubule assembly [68] via Rho family molecules,
which are major small GTPases important for cytoskeletal
dynamics [69-71]. Conversely, the Rho family regulates
cadherin-mediated cell adhesion [72,73]. IQGAP1, an
effector of the Rho family, mediates Rho GTPases' regula-
tion of cadherin-mediated cell adhesion [74,75]. These
findings suggest a dynamic feedback loop between cell-
cell adhesion and the cytoskeletons through the activities
of Rho GTPases and their associated proteins, such as
IQGAP1. Moreover, p120 catenin, which associates with
the cytoplasmic domain of cadherins, might play an
important role in regulating cadherin flow at the cell sur-
face via microtubules [76] and endocytosis [77,78]. The
endocytosis of cadherins is also regulated by Rho GTPases
through IQGAP1 [79], and p120 regulates the activity of
the Rho family [80]. Taken together, these observations
suggest that cadherin-mediated cell adhesion and
cytoskeletal remodeling compose a dynamic regulatory
circuit for cell migration upon cell-cell contact. This con-

jecture resembles the molecular mechanism of integrin-
mediated cell migration that depends on cell-cell matrix
contacts [81,82] and may also fit our model. Although the
molecular and cellular bases of the Htr and Hm prefer-
ences will need to be clarified in the future to eventually
explain the mechanism underlying the 'inside and out-
side' pattern of cell sorting, the sufficient conditions pre-
dicted in this study may give new insight into the process
of cell sorting.

Recently, constructing a comprehensive model of the
intracellular dynamics using genome, proteome, and
metabolome information is a trend in systems biology,
because the high-throughput experiments enabled us to
accumulate large amount of experimental data. Since our
model is described as motile cellular automata, their inner
states can easily be superimposed with the intracellular
dynamics models like E-CELL[83]. By combining our
model with the comprehensive models of intracellular
dynamics, the systems biology approach may be
expanded into inter- and multi-cellular level.

Conclusion
This study suggests that the "inside and outside" configu-
ration of cell-sorting can be successfully explained based
on the concept of directional cell movement and the SAH.
In addition, our results strongly suggest that the cell type
which would ultimately be located near the center of the
aggregate might be determined by the manner of direc-
tional movement and the mobility assigned to each cell
type. These results can bridge findings at molecular or cel-
lular level and mechanisms of morphogenesis during
development. Since our model embodies various cellular
behaviors that should be important for pattern formation,
this model may also be applicable to other developmental
processes beyond cell sorting.

Methods
Outline of in silico cell model
To simplify our model, a two-dimensional finite hexago-
nal lattice space is postulated. In this model, each cell
occupies multiple hexagons in the lattice space (Fig. 1a),
with the number of hexagons occupied by a single cell
representing the cell's size. The standard cell size was set at
19 hexagons to allow for dynamic change in the cell's
shape in response to its simulated surroundings. Each cell
contains one hexagon that the cell never loses; this hexa-
gon represents the cell's "core position." Whenever a cell
is smaller than the standard cell size (= 19 hexagons), the
cell attempts to occupy a vacant hexagon nearest to its
core position. The vacant hexagon must be adjacent to
hexagons occupied by the cell and must be located within
a certain distance (= 4 hexagons) from the core position.
Whenever a cell is larger than the standard size, the cell
abandons the hexagon furthest from its core position. If
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abandoning the hexagon would cause a division in the
cell, the cell retains that hexagon and abandons another
hexagon. When this procedure is repeated for a single cell
in a free lattice space, the cell tends to become round and
of the standard size, with its core position located at the
center of the cell (Fig. 1a). Thus, the core position may be
regarded as the position at which a cell tries to remain in
place at any given time point.

In a cluster of cells, the cells interact with one another and
cause positional conflicts. If an expanding cell cannot find
a suitable vacant hexagon, the cell attempts to occupy an
already occupied adjacent hexagon nearest to its core
position. When a cell occupies a hexagon formerly occu-
pied by a neighboring cell, the neighboring cell loses that
hexagon. This behavior represents the pushing of a neigh-
boring cell. However, a cell cannot occupy a target hexa-
gon if the hexagon is too close to the core position of the
neighboring cell occupying that hexagon. This distance
was set at 2 hexagons. Thus, this parameter models the
pushing of a cell back against its neighboring cell, since
the acquisition of the target hexagon would create an
excessive invasion into the neighboring cell's body. In this
situation, the cell then searches for another hexagon to
acquire.

When a cell abandons one of its own hexagons, an adja-
cent cell often occupies that hexagon even if the size of the
adjacent cell becomes larger than the standard size. This
procedure represents the adjacent cell being stretched by
mutual cell adhesion (Fig. 1b).

Because of positional conflicts, the individual cells in a
cluster are often distorted, and the core position of a cell
is not always at its center, defined as the hexagon with the
minimum sum of distances from peripheral hexagons. If
the shape of a cell is far from round (described later), the
core position is shifted to an adjacent hexagon closer to
the cell's center (Fig. 1c). This shift represents a cell being
pushed away from its desired position.

During each step of the computer simulation, each cell
performs the above-mentioned procedures, abandoning
and acquiring new hexagons. If the cell becomes dis-
torted, the procedure is re-performed. The acquisition or
loss of a lattice as a result of a neighboring cell's behavior
does not waste that cell's turn.

Autonomous cell movement
We also simulated autonomous cellular motility. For con-
venience, two discrete cellular states were defined: in stay
and in move. A cell in stay receives external signals from
neighboring cells through its cell membrane and alters its
inner state in response to those signals. The inner state of
the i-th cell, Ii, was defined as follows:

where Ni is the number of lattice edges composing the
border (= membranes) of the i-th cell and ΔIk

j is the inner
state increase determined by the signal of cell type k
through the j-th edge of the border of the i-th cell.

When the inner state exceeds a threshold (ACTIVATION
THRESHOLD, described later), the cell is activated and
tries to move into a gap between adjacent cells. To move,
the activated cell needs an adjacent cell that is in stay to use
as a scaffold. If both adjacent cells composing a gap are
moving, the gap is not penetrable. The activated cell's
order of preference of penetrable gaps depends on the
combinations of cell types by which the gaps are bound
(described later). When a cell chooses a penetrable gap,
the cell shifts its core position towards the chosen gap;
thus, the cell moves in a direction from its core position
and towards the chosen gap. On the other hand, the core
position of the scaffold cell is simultaneously shifted in a
direction opposite to the activated cell's direction of
movement. Once the activated cell shifts its core position,
the cell acquires an in move status and maintains its core
position at the same position for several steps (described
later); meanwhile, the scaffold cell is held by the moving
cell and cannot move autonomously. Over the course of
several steps, both the cell in move and the scaffold cell
gather their occupied lattices around their respective core
positions according to the acquisition or relinquishing of
lattice hexagons described above. This means that the cell
in move draws its body towards its core position while the
scaffold cell is moved in the opposite direction as a phys-
ical reaction to the movement of the cell in move [84].
After several steps, the cell in move autonomously returns
to an in stay status and releases the scaffold cell. When the
activated cell cannot find suitable gaps, the activated cell
becomes in stay and finishes its turn.

At each step, all cells perform their respective actions dur-
ing their turn; the order of turns is decided randomly at
the beginning of each step. A single simulation comprises
96,000 steps.

Parameters regulating cellular behaviors
Several parameters reflecting cellular properties and
behaviors were implemented: (1) the distortion score of
the cell's shape; (2) the response to cell signaling promot-
ing cellular movement; (3) the threshold of autonomous
cell motility; (4) the order of preference of penetrable
gaps, which determines the direction of cellular move-
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ment; (5) the duration of the in move-state; and (6) the
distance of cell movement during a single activation.

The distortion score of a cell's shape was calculated as fol-
lows: the sum of the distances from the center of the cell
to each lattice occupied by the cell was subtracted from
the sum of the distances from the center of an imaginary
round-shaped cell of the same size as the actual cell to
each lattice of the imaginary cell and then divided by the
cell's size. If the distortion score of a cell was larger than a
parameter defined as MAXIMAL DISTORTION SCORE,
the core position of the cell was shifted to an adjacent hex-
agon closer to the center of the cell's body. Thus, MAXI-
MAL DISTORTION SCORE represents the resistance of a
cell to the pressure from neighboring cells.

To calculate the response to external cell signaling that
promotes the movement of the cell in question, we
assumed that ΔIs

j = 0, ΔId
j = 1, and ΔIc

j = ΔIm
j = 2, (where j

= 1...Ni). The symbols s, d, c, and m denote the same cell
type, different cell type, cavity, and medium, respectively.
Both cavity and medium correspond to vacant hexagons:
a vacant hexagon located within an aggregate was defined
as a cavity, while a vacant hexagon located outside an
aggregate was defined as a medium. Thus, signals from
neighboring cells of the same cell type do not increase the
i-th cell's inner state, while signals from different cell types
increase the i-th cell's inner state and both cavity and
medium classifications increase the i-th cell's inner state
even more.

The threshold of autonomous cell motility was defined as
ACTIVATION THRESHOLD. ACTIVATION THRESHOLD
represents the resistance to contact with different cell
types or alien stimuli (cavity and medium). If the inner
state exceeds the ACTIVATION THRESHOLD, the i-th cell
searches for penetrable gaps.

Five possible gaps were defined as follows: gaps between
a) two cells of the same cell type as the cell in question, b)
one cell of the same cell type as the cell in question and
one cell of a different cell type, c) one cell of the same cell
type as the cell in question and a cavity, d) one cell of a
different cell type and a cavity, or e) two cells of different
cell types. However, only gaps a), b), and c) were assumed
to be penetrable, and gaps d) and e) were excluded. In
other words, each cell moves in a manner that promotes
contact with the same cell type. In view of the preference
for cell type-specific contact and the no inner state
increase by signals from the same cell type, our model
generally reflects specific cell adhesion mechanisms.

After an activated cell chooses a gap and shifts its core
position toward the chosen gap, the cell switches to an in
move state, in which the cell attempts to keep its new core

position at the new lattice unit and to gather its occupied
hexagons around the new core position over the course of
several steps that are parameterized as DRAGGING TIME.
If the DRAGGING TIME is relatively long, the cell's shape
stabilizes and the cell seems to remain in position in spite
of its in move state. Since a cell with a short DRAGGING
TIME quickly completes the reconstruction of its cell
body, the cell can once again become ready to respond to
external signals and to shift its core position to another
new position. As a result, cells with a short DRAGGING
TIME can move more quickly than cells with a long
DRAGGING TIME under the influence of successive sig-
nals.

In addition to DRAGGING TIME, we defined another
parameter for mobility: SINGLE MOVING DISTANCE.
SINGLE MOVING DISTANCE defines the distance that
the core position moves after a single activation. A cell
with a longer SINGLE MOVING DISTANCE shifts its core
position further than a cell with a shorter SINGLE MOV-
ING DISTANCE when the cells have the same DRAG-
GING TIME.

Initial conditions of randomly mixed aggregates
The finite hexagonal lattice space was set at 201 by 201. As
the first step in the simulated cell rearrangement, we pre-
pared a randomly mixed cell aggregate on the hexagonal
lattice space as follows. The core positions of two cell
types, 'light' and 'dark', were randomly placed at intervals
of three lattices within a square area (73 ≤ x ≤ 127, 73 ≤ y
≤ 127). Since the initial cell size was set at 1, a period
(3,000 steps) was assigned during which each cell
expanded to attain a size of about 19 lattice units. None
of the cells received external signals or moved autono-
mously during this period. The shape of the aggregate at
the end of this period was roughly square (data not
shown), but no signs of hysteresis as a result of the square
shape were observed. The total number of steps in each
simulation was 96,000, including the first 3,000 steps.

Usually, aggregation cultures of live cells are rotated to
gather the cells together [85]. To mimic this force toward
the center of the aggregate, the peripheral cells of the in sil-
ico aggregate were pushed toward the center of the hexag-
onal lattice space (100, 100) with a force reflecting the
length of their membranes exposed to the medium. The
force toward the center of the aggregate shifted the core
positions of the cells from each current lattice to the
neighboring lattice nearest to the center of the lattice space
every four steps with a probability reflecting a ratio of the
number of edges exposed to the medium to the number
of edges of an imaginary round-shape cell of the standard
size.
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Quantification and criteria of aggregate pattern
To classify the aggregation patterns, the areas within an
aggregate and the periphery of the aggregate occupied by
each cell type were measured using NIH ImageJ http://
rsb.info.nih.gov/ij/ with the program's parameters set as
follows: "distance in pixels" = 72, "known distance" =
1.00, "pixel aspect ratio" = 1.0, and "unit of length" =
inch. The parameters were expediently set and did not
reflect the actual scales.

To objectively determine whether the aggregates had
attained an "inside and outside" configuration using each
parameter set, we defined two parameters: CELL DISTRI-
BUTION RATIO and PERIMETER RATIO. The CELL DIS-
TRIBUTION RATIO parameter indicates the ratio of the
number of cells of a given cell type in the central region of
the aggregate, which is divided into two regions (central
and peripheral) with the same area, to the number of cells
in the peripheral region. The PERIMETER RATIO parame-
ter indicates the ratio of the length of the perimeter of an
aggregate occupied by a given cell type to the length of the
perimeter occupied by the other cell type. Based on our
preliminary results, we classified the parameter sets as fol-
lows: when the mean CELL DISTRIBUTION RATIO of
either cell type exceeded 3.0 and the mean PERIMETER
RATIO of that cell type did not exceed 0.15 for a given
parameter set, then the set was regarded as recapitulating
the "inside and outside" configuration of cell-sorting.
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