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Abstract
Background: Genome-wide mutant strain collections have increased demand for high throughput cellular
phenotyping (HTCP). For example, investigators use HTCP to investigate interactions between gene deletion
mutations and additional chemical or genetic perturbations by assessing differences in cell proliferation among the
collection of 5000 S. cerevisiae gene deletion strains. Such studies have thus far been predominantly qualitative,
using agar cell arrays to subjectively score growth differences. Quantitative systems level analysis of gene
interactions would be enabled by more precise HTCP methods, such as kinetic analysis of cell proliferation in
liquid culture by optical density. However, requirements for processing liquid cultures make them relatively
cumbersome and low throughput compared to agar. To improve HTCP performance and advance capabilities for
quantifying interactions, YeastXtract software was developed for automated analysis of cell array images.

Results: YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures. The
accuracy and precision for image analysis of agar culture arrays was comparable to OD measurements of liquid
cultures. Using YeastXtract, image intensity vs. biomass of spot cultures was linearly correlated over two orders
of magnitude. Thus cell proliferation could be measured over about seven generations, including four to five
generations of relatively constant exponential phase growth. Spot area normalization reduced the variation in
measurements of total growth efficiency. A growth model, based on the logistic function, increased precision and
accuracy of maximum specific rate measurements, compared to empirical methods. The logistic function model
was also more robust against data sparseness, meaning that less data was required to obtain accurate, precise,
quantitative growth phenotypes.

Conclusion: Microbial cultures spotted onto agar media are widely used for genotype-phenotype analysis,
however quantitative HTCP methods capable of measuring kinetic growth rates have not been available
previously. YeastXtract provides objective, automated, quantitative, image analysis of agar cell culture arrays.
Fitting the resulting data to a logistic equation-based growth model yields robust, accurate growth rate
information. These methods allow the incorporation of imaging and automated image analysis of cell arrays, grown
on solid agar media, into HTCP-driven experimental approaches, such as global, quantitative analysis of gene
interaction networks.
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Background
Most genetic research is aimed ultimately at understand-
ing how phenotypes are produced. This is complicated by
the fact that genes interact with the environment and
other genes in producing phenotypes, such that the phe-
notypic effect of mutating any single gene depends on the
allele status at secondary loci as well as environmental
variables [1]. Large-scale phenotypic analysis of combina-
tions of genetic and environmental variations (perturba-
tions) has proven useful for understanding the
organization of gene networks [2-4]. However, analysis of
gene interactions is not tractable in humans due to their
outbred nature and phenotypic complexity [5], thus
genetically tractable model systems can provide new
inroads for understanding genotype-phenotype complex-
ity of human disease pathways [6,7]. In this regard, the
collection of 5000 yeast gene deletion strains provides a
unique resource for systematic analysis of gene interac-
tions by comparing cell proliferation phenotypes (CPPs)
of the WT strain and each deletion mutant under various
perturbation conditions [2-4,8,9].

Most large-scale phenotypic analyses of the yeast gene
deletion strains have been non-or semi-quantitative,
based on end-point analysis of cell proliferation [10]. On
a smaller scale, quantitative analysis of gene interactions
has proven advantageous by virtue of being more objec-
tive, sensitive, and discriminating between strength of
interactions, which can aid identification of distinct path-
ways represented within large sets of interacting genes
[2,11-14]. Precise quantitative phenotyping together with
kinetic analysis of cell proliferation can reveal differential
genetic regulation of distinct physiological phases of
growth [15,16]. Ideally, HTCP would have sufficient
throughput and quantitative accuracy for investigating
genotype-phenotype complexity with respect to many
dimensions including time, different kinetic features of
cell proliferation, gene-gene and gene-environment per-
turbation combinations, and gradients of perturbation
intensity. These dimensions may be critical to parse gene
networks functionally.

Turbidity readings of liquid cultures are the current stand-
ard for kinetic analysis of microbial cell proliferation
[12,16]. However, throughput is greatly reduced, relative
to endpoint analysis of agar spotted arrays, or the use of
DNA microarray hybridization methods [4,8,17-19].
Throughput is lower for kinetic vs. endpoint analysis
because ~30 time points of data are taken for each culture.
Furthermore, liquid arrays are more difficult to analyze
than solid arrays due to shaking requirements for resus-
pending cells prior to each reading, and increased time for
operation of a microplate reader vs. visual inspection. Pre-
cision of kinetic turbidity readings is limited by spilling,
cross contamination, and evaporation, which hinders

miniaturization and automation of liquid culture-based
HTCP. Phenotypic Array Analysis (PAA), an alternative
quantitative HTCP approach based on time-lapse imaging
and image analysis of agar spotted cell arrays, improves
throughput to ~25,000-100,000 measurements per hour
[2], taking advantage of the easy handling and potential
for rapid imaging of agar cell arrays. This work describes
YeastXtract, an image analysis software application that
improves PAA, so that early phase kinetic growth rates can
be measured, analogous to OD readings of liquid cultures.
Validation experiments are presented for YeastXtract.
Additionally, the logistic growth equation was used for
kinetic modeling of cell proliferation data and shown to
offer advantages over empirical growth models for quan-
tifying cell proliferation phenotypes from time series
images. Together, these methods are intended to improve
HTCP capacity for global, quantitative analysis of gene
interactions using large microbial mutant collections.

Results and Discussion
YeastXtract image analysis software
YeastXtract is a software application that analyzes time
series images of yeast cell arrays, for the purpose of kinetic
growth curve analysis, and can be used on operating sys-
tems with the Java platform installed. From the YeastX-
tract user interface, a sequence of images is selected using
a 'Browse' function, and automated analysis is initiated by
selecting the "Start Analysis" button. After analysis is com-
plete, the enumerated intensities and areas of culture
spots are displayed. Time-lapse images of individual spot
cultures, along with plotted growth curves can be accessed
via the 'Spot Level Information' tab. Accuracy of spot
detection can be checked using the 'Spot Detection' func-
tion which depicts the ellipses used to quantify biomass of
each culture on the cell array image. A user manual with
screenshots depicting how these functions are accessed
from the user interface is provided as [see Additional file
1]. The software executables, source code, and sample
images are available for download [20] and use under the
Creative Commons Attribution-NonCommercial-ShareA-
like 2.5 license [21]. The software has a modular design to
facilitate modification and further development. An over-
view of the analysis algorithm is provided below, with a
detailed description in Methods.

Up to ten cell arrays are imaged at a time, using an optical
scanner (Fig. 1a), as previously described [2]. Each cell
array time series is analyzed individually (Fig. 1b). Images
from a time series are aligned in reverse-chronological
order using a least squares algorithm. The final time point
is used for spot detection (Figs. 1c,1d), and the resulting
'grid' is used for spot extraction from aligned images (Fig.
1e). Spot detection is performed in two steps. First, the
approximate center of each spot is determined from local
maxima of summed pixel columns and rows (Fig. 1c). Sec-
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ond, the pixel columns and rows in each cell of the result-
ing grid are analyzed to identify the horizontal and
vertical diameters of each spot, from which an ellipse is
calculated (Fig. 1d). For signal extraction, the background
of each spot is computed from a localized mean around
the mode of pixel intensities outside the ellipse, and then
subtracted from intensities of each pixel inside the ellipse
(Fig. 1e). Total pixel intensity is calculated for each time-
point, and the intensities are plotted vs. time (Fig. 1f). The
pixel area of each ellipse is calculated in order to normal-
ize spot intensities against spot size.

YeastXtract provides accuracy and precision for image 
analysis of agar culture arrays comparable to optical 
density readings of liquid cultures
The original aim of this study was to increase the sensitiv-
ity for detecting spotted cell cultures to reach the range
and accuracy of microplate readers for kinetic growth
analysis. Our previous image analysis programs did not
have the sensitivity to measure specific growth rates when
they were in their maximal steady state [2]. Spot detection
and local background subtraction were implemented to
increase accuracy and precision of intensity measures.
Background subtraction is also useful for modeling
growth phenomena, since the background is non-biolog-

An overview of the YeastXtract image analysis algorithmFigure 1
An overview of the YeastXtract image analysis algorithm. (a) A limited time series of four replicate cell arrays is 
shown. The arrays were created from serial 2-fold dilution of a 1:4 dilution of an overnight culture, skipping rows with each 
dilution and backfilling skipped rows. (b) A time series of one cell array from Panel A is shown at larger magnification. (c) 
Depiction of the first step of spot detection. A grid is created from the local maximum values after summing row and column 
pixel intensities over the entire array image (see Materials and Methods). The summed row and column pixel intensities are 
plotted at the edges of the array. (d) Depiction of the second step of spot detection. A cell containing each spot is defined by 
the 50 × 50 Pixel square surrounding the grid intersections shown in panel C. Within each cell, the horizontal and vertical 
diameters of each spot are calculated as the pixel distance between threshold values of summed column and row pixel intensi-
ties. An ellipse is drawn around each spot based on the resulting diameters. Spot detection is more precise for darker spots. 
Hence, the last time point is used for spot detection and those ellipses are used for extracting signal intensities from aligned 
time series of images of each cell array. (e) After spot detection, the background local to each spot is subtracted and remaining 
signal intensities are calculated by summing pixel values inside each ellipse. (f) Spot intensities are plotted versus time and used 
for growth modeling.
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ical and can contribute substantially (~25%) to the final
spot intensity.

Particle size analysis (Z2 Coulter Counter, Beckman) was
used to determine the correlation between biomass (total
cell volume) of a spot and its spot intensity measurement
(Fig. 2a, see Additional file 2). A gradient of dilutions
(from 1:4 to 1:60,000) of an overnight culture were spot-
ted onto a 96-culture array. After 23 hours, the array was
imaged (Fig. 2b) and all cultures were immediately
excised and subjected to particle size analysis. After image
analysis, spot intensities were plotted vs. total cell volume
(Fig. 2). The densest culture spots had intensity of about
7.5 × 104 pixels (spot area of ~610), and contained
approximately 9 × 107 cells having a total cellular volume
of ~3 × 109 fL. Including average pixel intensity back-
ground of ~37, the average spot culture pixel intensity was
approximately 158. Thus, given the pixel intensity of 8-bit
images ranges from 0 to 255, final spot intensities reach
only ~65% image saturation. Linear regression of image
intensity vs. biomass (total cell volume) of spot cultures
revealed a high degree of correlation (R2 = .94). Total cell
volume had slightly higher linear correlation than cell
number (R2 = .92), due to a slight reduction in median cell
size as cultures approached their final population density
(Fig. 2a). It can be concluded from Fig. 2 that PAA-derived
spot intensities are comparable to OD measurements of
liquid cultures, with respect to accuracy and precision for
quantifying cell proliferation.

Four microliters of culture suspension is typically used for
spotting cultures, giving rise to a spot area of approxi-
mately 625 pixels (25 × 25) on a 600 × 400 pixel array
(140 dpi resolution image of standard SBS microplate).
Spot cultures are detected when the average pixel intensity
is approximately one (Fig. 3d). A constant exponential
rate of growth is observed over 4-5 generation times (Figs.
3a and 3d). The final population intensity (FPI), reflecting
total growth efficiency when resources for cell prolifera-
tion are exhausted, is typically (normalized by spot area)
around 100-120. TMR (time when maximum growth rate
is observed) is the time it takes a culture to reach its max-
imum growth rate (see kinetic growth modeling in Meth-
ods). Thus, the difference in TMR between two-fold
dilutions of a culture approximates the minimum dou-
bling time (Fig. 3c). Shifting 2-fold diluted cultures by
TMR yields overlapping growth curves (Fig. 3d).

Normalization of spot intensity by spot area reduces 
variation in FPI and AUGC
An important difference between liquid and agar culture
analysis is that the area of the culture spot affects the read-
ing (Fig. 4a). Hence, normalizing spot intensity data by
spot area can reduce experimental noise, since spot area
variation is mostly non-biological (Fig. 4b). The utility of
spot area normalization was tested by intentionally vary-
ing the spot size, and normalization was found to correct
almost entirely for the effect of spot size on growth curve
differences (Fig. 4c, see Additional file 3). FPI reflects the

Biomass correlates linearly with spot intensity of imaged culturesFigure 2
Biomass correlates linearly with spot intensity of imaged cultures. An overnight culture was first diluted 1:4 in water 
and then serially diluted (3:4) in column A of a 96 well plate. All cultures were then 2-fold serial-diluted across each row, and 4 
μL of the resulting cell suspension was spotted to agar media. The cell array was imaged 23 hours after spotting and cultures 
were immediately excised and resuspended in 2 mL of ice-cold water. Biomass was calculated by particle size analysis of each 
culture resuspension. The data used to generate this figure are in Additional file 2. (a) The numerical output (spot intensity) 
from YeastXtract is plotted vs. biomass for each culture. Biomass is calculated as the total cell number times the median cell 
volume (also plotted for each culture). (b) The image used for this analysis is shown along with the ellipses used for signal 
extraction.
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carrying capacity (total growth yield, or efficiency) of a
culture [22,23]. Since there is variation in the areas of cul-
tures even when equal volumes are used to print each
spot, spot area normalization is needed to accurately com-
pare growth efficiency. In summary, spot area normaliza-
tion reduces variation in FPI (final population intensity)
and AUGC (area under growth curve), while not affecting
MSR (maximum specific rate) or TMR calculations (Fig. 4,
Tables 1 and 2).

A logistic function model is used to quantify cell 
proliferation phenotypes, such as maximum specific rate 
and total growth efficiency, from time series data
Different attributes of growth curves represent distinct
physiological phases of growth [16]. When a fresh culture
is inoculated from a saturated, stationary culture, there is
typically a 'lag' phase until the culture doubling time
reaches a minimum. The population then undergoes a
phase of growth during which the overall growth rate
increases exponentially while the specific rate, or percent
change in population with respect to time, remains con-
stant (Fig. 5). Finally, when resources supporting growth
become limiting, the growth rate decays until growth
ceases and the "carrying capacity" is thus reached. These

Spot intensities of culture images are used for kinetic analysis of proliferationFigure 3
Spot intensities of culture images are used for kinetic analysis of proliferation. An overnight culture was serially 
diluted, by 2-fold, across a 96-well plate. (a) Raw image intensities are plotted versus time for a representative culture at each 
dilution. (b) The images of spot cultures for each data point in panel (a) are shown. (c) After fitting the data to the logistic 
equation, TMR, which is the time at which the overall population growth rate is maximal, was calculated for each curve and is 
plotted versus time. The difference between values of TMR for each curve reflects the doubling time, since cultures were cre-
ated by serial two-fold dilution. (d) The spot intensities were normalized by spot area, and curves were shifted on the time 
axis by the difference between TMR of the culture and TMR of the 256×-diluted culture.
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physiologically distinct characteristics of growth are
potentially under the control of different genes and path-
ways and can thus be considered as different cell prolifer-
ation phenotypes (CPPs). In this study, we focused on the
following CPPs:

• Total Growth Efficiency, which is measured by the Final
Population Intensity (FPI) of a spot culture, is also
referred to as the carrying capacity in the logistic equation.

• Specific Growth Rate is the growth rate divided by the
population size.

• Maximum Specific Growth Rate (MSR) is the maximum
value of the specific rate over time, and is inversely pro-
portional to the minimum doubling time of a culture.

• Doubling Time is the time required for the population
size to double. Minimum doubling time is equal to loge 2/
MSR.

• Area Under Growth Curve (AUGC) is the integral of spot
intensity curve over the interval between the first and final
time point.

• Time of Maximum Rate (TMR) corresponds to the time
when the growth rate reaches its peak value; by the logistic

Normalizing spot intensity by spot area increases precision of growth curve analysisFigure 4
Normalizing spot intensity by spot area increases precision of growth curve analysis. An overnight culture was 
diluted 1:2000 and distributed into a 96 well plate. Agar arrays were printed using 2 uL and 4 uL drops. A time series of images 
was collected for 72 hrs. The data used to generate this figure are in Additional file 2. (a) From the final time point, spot inten-
sity is plotted against spot area (scale to left), and normalized spot area is also plotted (scale to right). (b) Averaged data from 
all 96 cultures (4 μL drop array) are plotted for normalized and non-normalized spot intensities. Standard deviation bars show 
the effect of spot area normalization on measurement variation across time. (c) To further see the effect of normalization, 
arrays made with 2 μL and 4 μL spots from the same starting culture were analyzed. The averaged data from each set of 96 
cultures, normalized and non-normalized, were plotted vs. time. (d) To observe the effect of spot area normalization on the 
MSR and AUGC, non-normalized and normalized values for each CPP were plotted vs. spot area.
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model, TMR marks the time when half carrying capacity is
reached.

• Lag Time is a property of the culture, whereby there is a
delay after cells are introduced into a new medium before
MSR is achieved.

To evaluate the performance of different growth models,
we considered reduction in the variation of CPP values
from many replicate cultures as an increase in the preci-
sion of a model (Tables 1 and 2). The following form of
the logistic equation was used to fit growth data:

where K ("carrying capacity") is approximated by the FPI;
r is the MSR, and l is the TMR. We compared CPPs derived
from the logistic equation model, the raw data, and data
fit to a spline model (see Methods for more details about
the models).

The logistic function growth model increases precision of 
MSR and TMR measurements
Median MSR values were comparable, regardless of the
model used for calculation (Table 1), with minimum dou-
bling times ranging between 1.75 (MSR = .40) and 1.98
(MSR = .35) hours. However, the variation in MSR values
was reduced by 63% (24% vs. 9%) if calculated using
spline-fit data instead of raw data (Table 1, see Additional
file 4). MSR variation was reduced another 44% (9% vs.
5%) using the logistic model (Table 1). Variation in the
calculation of TMR was similarly improved by the spline-
and logistic equation-fitted data. The likely explanation

for the reduced variation in the spline-fit vs. the raw data
is that growth is a continuous function, and thus fitting of
the data increases precision by reducing the time interval
for rate calculations. Increases in measurement precision
for MSR and TMR with the logistic equation may stem
from it being specifically designed for modeling growth
phenomena [22,23].

AUGC measurements were not greatly impacted by the
model used. Likewise, FPI, which is a dominant factor in
AUGC calculation, is relatively unaffected by model selec-
tion (Table 1). There was a trend toward lower FPI and
AUGC with the logistic model (Fig. 5), which was investi-
gated by examining the nature of FPI in more detail, as
described below.

An 'initial carrying capacity' is modeled by the logistic 
equation
The trend toward lower FPI and AUGC with the logistic
model (Tables 1 and 2) was caused by underestimation of
spot intensity at later times, particularly for cultures spot-
ted on the edge of an array (Figs. 5 and 6). It was fre-
quently observed, in images from late time points, that
spots around the edges of the array tend to have larger
areas than interior-located spots. Thus, we hypothesized
that increases in spot intensity, if due to increases in spot
area at late time points, would not be well modeled by the
logistic equation. As the hypothesis goes, once the spot
has grown to confluence, it reaches an 'initial carrying
capacity', however due to a residuum of energy sources,
cultures can continue to grow slowly (with non-logistic
kinetics). Since the cultures have grown to confluence,
new cells begin to become outwardly displaced, resulting
in an increasing spot area. Since the cultures on the edge
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Table 2: Effect of spot area normalization on cell proliferation phenotypes. Area-normalized spot intensities were used in place of total 
intensities to compare the three growth models, as was done in Table 1. Spot area normalization reduced the percent variation for 
FPI and AUGC, while not affecting MSR or TMR.

MSR FPI TMR AUGC

Model MEDIAN %STD DEV MEDIAN %STD DEV MEDIAN %STD DEV MEDIAN %STD DEV

Raw .40 23.8 119.1 4.6 29.8 4.4 4724 5.6
Spline .37 9.1 119.1 4.6 27.3 2.0 4886 5.2

Logistic .35 4.1 100.4 6.9 26.2 1.0 4479 6.9

Table 1: Comparison of cell proliferation phenotypes calculated with three different models.

MSR FPI TMR AUGC

Model MEDIAN %STD. DEV. MEDIAN %STD. DEV. MEDIAN %STD. DEV. MEDIAN %STD. DEV.

Raw .40 23.8 7.96e+4 10.1 29.8 4.4 3.13e+6 9.6
Spline .37 9.1 7.96e+4 10.1 27.3 2.0 3.25e+6 9.5

Logistic .35 4.6 6.7e+4 10.2 26.2 1.2 2.99e+6 9.9
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of the array have less competition for available nutrients,
the spot areas can increase more.

In Fig. 5, these phenomena are depicted by a time series of
spot intensities for a typical edge culture, where an inflec-
tion in the growth curve occurs after initial carrying capac-
ity is reached (between 40 and 45 hrs). Fitting the data to
a spline, the late increase in spot intensity is followed
closely (Fig. 5b). However fitting the same data to the
logistic equation, this inflection in the spot intensity curve
is missed (Fig. 5c). In summary, the area of agar initially
covered by cells at the time of array printing grows to con-
fluence, reaching an "initial carrying capacity"; and fur-
ther increases in spot intensities are correlated with actual

increase in the size of the spot (Fig. 6), which is not well
modeled by the logistic equation.

Data are filtered after the time initial carrying capacity is 
reached to improve modeling
To better understand the nature of the initial carrying
capacity, the difference in spot area after 39 and 70 hours
of growth was examined, confirming that edge cultures
increase in size more than internal cultures (Fig. 6a). We
next examined the growth rate with respect to time and
spot area, finding that increases in spot area correspond
with an inflection in the growth rate curve (Fig. 6b). Thus,
once spot cultures have reached their initial carrying
capacity (the maximum population yield over the original

Spot intensity time series data are accurately modeled by the logistic growth equationFigure 5
Spot intensity time series data are accurately modeled by the logistic growth equation. Spot intensity data from a 
typical spot culture, on the edge of a cell array, were used to illustrate three different growth models. (a) Raw spot intensity is 
plotted versus time. Also plotted are the growth rate and specific growth rate, as calculated directly from the raw data. (b) A 
spline was used to fit the raw data from panel A. The raw data are plotted vs. time, along with the fitted growth curve, growth 
rate, and specific growth rate. (c) The logistic growth equation was used to fit the raw data and to calculate growth rate and 
specific growth rate. Refer to Tables 1 and 2 for comparison of cell proliferation phenotype values obtained by each model.
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area for the spotted culture), further increases are associ-
ated with increases in the spot area, occurring preferen-
tially at the edges of a cell array.

To improve growth curve modeling with the logistic equa-
tion, we designed a filtering algorithm to reduce the
effects that increases is spot area might have after initial
carrying capacity is reached, since individual cultures in
an experiment might have varying growth rates due to
gene deletions and/or other perturbations. Since the logis-
tic equation has the property that the maximum growth
rate occurs when population is at half of carrying capacity,
we used a spline to estimate the TMR and then filtered out
time points having greater than 2.2 times the spot inten-
sity at TMR. The filtering algorithm improves fitting of
data to the logistic model by reducing the tendency for
artificial increases in FPI for cultures on the edge of an
array (Fig. 6b).

Physiological lag time can be measured directly by 
Phenotypic Array Analysis
An assumption of the logistic equation is that the MSR
occurs at time = 0 (Fig. 5c). However, realistically there is
a physiological lag time that occurs when a culture having
approached carrying capacity, is again inoculated into
fresh media conditions. The lag time is typically 1-2 gen-
eration times, but of variable duration. Since, with PAA,
growth is analyzed over nearly 20 generations, the effect
of lag on the logistic model is negligible (Tables 1 and 2).
However, since the lag time is of biological significance
and interest, we investigated use of the spline model for

directly measuring the lag time from cell array images
(Fig. 7). For this experiment, the same 'overnight' starting
culture was diluted either 4-fold or 2000-fold before
printing to different arrays. The lag time (the time for a
culture to reach MSR) was ~5 hours (Fig. 7a). The more
highly diluted culture achieved the same MSR (~.32),
which was observed at the time the spot intensity
breached the threshold of image detection (Fig. 7b). Thus,
lag time and MSR can be measured together by printing
arrays with low-dilution cultures.

The logistic equation-based growth model is robust against 
data sparseness
Once it was realized that the logistic equation was an
accurate model for characterizing yeast cell proliferation,
it became evident that it should be more robust than the
spline or raw models to data sparseness because its param-
eters are more constrained. To assess model stability, indi-
vidual time points were randomly removed one at a time
(from a set of 38 time-points, collected over 70 hours),
and MSR values were re-calculated from the remaining
data (Fig. 8, see Additional file 5). The accuracy and preci-
sion of the average MSR value calculated from the logistic
model was greater than that calculated by the spline
model or using raw data (Fig. 8).

The robustness of the CPPs obtained from the logistic
model likely results from the appropriateness of assump-
tions inherent to its equation for cell proliferation phe-
nomena; the main assumption being that the rate of
increase in biomass at any time is proportional to the bio-

Data filtering is used to reduce the variable effect of spot area increases on growth curve modelingFigure 6
Data filtering is used to reduce the variable effect of spot area increases on growth curve modeling. (a) The 
increase in spot culture area, between 39 and 72 hours, is plotted for 96 replicate cultures (an 8 × 12 cell array). Internal and 
edge cultures are labeled differently to highlight the increases in spot area of edge cultures. (b) The spot intensity, spot area, 
growth rate (derived from a spline fit), and logistic-fitted growth curve are plotted vs. time to illustrate that the initial carrying 
capacity is reached about the time that the spot area begins to increase (after ~40 hrs in this example). Hence, late data are fil-
tered to avoid the effect of this artifact on growth modeling with the logistic equation (see Materials and Methods).
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mass and the availability of resources [22,23]. A major
strength of this form of the logistic equation is that its two
major parameters, K and r, correlate well with FPI and
MSR under standard conditions for growing spotted cul-
tures on agar media.

Conclusion
Global, systematic analysis of gene interaction networks is
a recent experimental paradigm for systems biology. Since
genetic interactions are often scored on the basis of cell
proliferation measurements, HTCP is an enabling tech-
nology for this field of research. YeastXtract and the
growth modeling algorithms presented here, help
advance HTCP throughput and accuracy to enable pheno-
typic measurements in different dimensions such as vary-
ing intensities of perturbations, and different
physiological aspects of growth responses (e.g., lag, maxi-
mum growth rates, and total growth efficiency). These
advances will allow interactions to be investigated not
only from the perspective of different combinations of
gene and environmental/chemical perturbations, but also
different aspects of the growth phenotype itself, each of
which may be sculpted by different natural selective pres-
sure for gene activities.

In a previous publication, we described Phenotypic Array
Analysis, an HTCP method based on rapid imaging of
~25,000 spotted cultures per hour [2]. YeastXtract now
enables automated PAA, without need for manual pre-
processing of images. It provides single pixel resolution,
improving PAA sensitivity and accuracy. While the meth-
ods were developed using yeast, and intended for applica-

tion to the set of 5000 yeast gene deletion strains, they
should also be applicable to other cell types that can be
grown in similar fashion as agar cell arrays. Imaging and
automated image analysis of cell arrays can now be incor-
porated into HTCP-driven experimental approaches, such
as for quantitative investigations of gene interaction net-
works [1,2]. Looking forward, insight from global, quan-
titative analysis of gene interaction networks in single cell
organisms, should be extensible for hypothesis-driven
investigations of cellular pathways that buffer genetic and
environmental perturbations in an orthologous fashion
in multi-cellular organisms [24,25].

Methods
Strains and media
All experiments were performed with BY4741 strain
(MATa ura3 leu2 his3 met15). Pre-growth was in YPD liq-
uid media, dilutions were in water, and growth measure-
ments were on synthetic complete media [26].

Cell array printing and imaging
Cultures were grown as a single overnight culture and
diluted in water prior to spotting 4 μL drops onto agar
plates containing synthetic complete media, as previously
described [2]. The plates were incubated at 30°C, and
periodically removed and imaged on an Epson Expression
10,000 XL scanner operating in transmitted light mode.
Images were collected at 140 dpi and 8-bit grayscale. Time
stamps on the image files were used for generating growth
curves after image analysis.

Dense initial population cultures can be used to measure lag timeFigure 7
Dense initial population cultures can be used to measure lag time. Lag time is defined as the delay that a culture dem-
onstrates from the time it is freshly inoculated to the time that it achieves its minimal doubling time. The spline model was used 
to measure lag for a representative culture printed at (a) lower dilution (1:4) and (b) higher dilution (1:2000). In panel (a), lag 
time can be directly observed, because the spot is detectable (average pixel intensity > 1) at time = 0. In contrast, in panel (b) 
cultures have passed through lag phase and exhibit MSR by the time spot intensities reach the threshold of detection.
Page 10 of 14
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YeastXtract (image analysis)
The algorithm was devised by building upon experience
gained from development of a previous software program,
SignalViewer [27,28], and consists of three main proc-
esses:

1. Plate extraction and alignment
A set S, consisting of a time series of images of up to 10 cell
arrays, was processed as a group. Thus, for a single scan
configuration imaged k times, the image analysis algo-
rithm requires the following input:

• S, a set of k TIFF images,

• n, the number of plates on the scan,

• p, the pitch, or the expected distance (in pixels) between
the centers of two adjacent spots,

• d, the approximate expected length in pixels of a typical
spot's diameter,

• L, a set of pre-defined horizontal and vertical coordi-
nates that denote the location of each cell array ('plate')
on a 'scan', containing up to 10 plates

• r, number of culture rows on each array, and

• c, number of culture columns on each array.

The logistic growth equation model is relatively robust against sparse dataFigure 8
The logistic growth equation model is relatively robust against sparse data. Using the data represented in Tables 1 
and 2, time points were randomly removed [see Additional file 5], and MSR was recalculated using each growth model. Aver-
age MSR (with standard error bars; n = 96) is plotted against the number of data points removed. The logistic model exhibits 
lower variation between replicates and is more precise as data is removed.
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The pre-defined pixel coordinates in L for the position of
each plate on a scan are used to extract each plate at all k
time points. Because plates are manually placed on the
scanning surface, a particular plate can be in slightly dif-
ferent locations on scans imaged at two different times. To
minimize the effect of translocation on extraction of spot
intensities, all k images are aligned using a least squares
algorithm. Beginning with the next-to-last time-point,
each image is aligned with the image immediately after it
in time. Using the later image as a reference, the image is
shifted by -α to +α pixels in the horizontal direction and -
β to +β pixels in the vertical direction and the squared-dif-
ference in the pixel intensities of the two images is calcu-
lated for each combination of α and β. The image is
shifted by the combination of α and β that results in the
lowest difference between the two images. Using α = β =
4, the best alignment among 81 possible is selected.

2. Spot detection
During the spot "detection" phase, the final image from
the time series is used to identify the spot locations. First,
the rectangular regions containing each spot are deter-
mined by considering columns of pixels one at a time. The
75th percentile value of the pixel intensities in each col-
umn is calculated and the resultant value is stored in an
array. This procedure is repeated for all pixel rows of the
plate image and the intersection of the peak values of rows
and columns having the highest 75th percentile values are
used to identify the approximate center of each spot, as
depicted in Figure 1c. However, before detecting the
peaks, the values in the row and column percentile arrays
are processed using the LOESS smoothing algorithm with
a smoothing parameter value of 0.03; we have found that
this additional processing makes the algorithm more
robust by filtering away noise on the image that may cause
the algorithm to erroneously detect spot culture centers.
The intersections of the row and column peaks form a grid
representing the approximate locations of the spot cent-
ers. Given these centers and p, the approximate pitch, the
rectangular region encapsulating a culture spot (approxi-
mately p2 in size) can be extracted from the plate image.
This procedure is repeated for all culture spots on the
plate.

Next, the precise position of each spot within its region is
determined by again identifying peaks in the row and col-
umn percentile arrays. All k images of each culture spot are
collected and then aligned using the least squares method
described for aligning whole plates. The image of the cul-
ture spot from the final time point is analyzed to deter-
mine the coordinates of an elliptical region that
circumscribes the spot by summing the pixel intensities in
each column and row. LOESS smoothing algorithm was
used to process row and column sums with a smoothing
parameter of 0.25. The locations of the peaks and the loca-

tions where the row and column sums rise above a thresh-
old are used to compute the horizontal and vertical
coordinates of the center and the two diameters of the
ellipse, respectively (Fig. 1d):

•  (General equation of an ellipse)

• Ecf first pixel column where column sum is greater than
threshold,

• Ecl last pixel column where column sum is greater than
threshold,

• Erf first pixel row where row sum is greater than thresh-
old,

• Erl last pixel row where row sum is greater than thresh-
old,

• a = Ecl - Ecf

• b = Erl - Erf

• h = pixel column where column sum is highest

• k = pixel row where row sum is highest

3. Signal extraction
The background of the culture spot is determined by com-
puting the mode of the intensities of the pixels outside the
ellipse, but within the area containing the ellipse, and
then taking a local average around that mode. This back-
ground intensity is then subtracted from all images of this
culture spot. For each image belonging to a particular cul-
ture spot, pixel intensities inside the ellipse are summed.
The area of the ellipse circumscribing each culture spot is
calculated by counting the number of pixels inside the
ellipse.

Spot culture biomass measurements
For figure 3, 96 spot cultures were cut out immediately
after imaging and resuspended in 2 ml of ice-cold water by
vortexing the agar plug. An appropriate fraction of the cell
suspension was then taken for particle analysis (~5 × 106

total cells), and transferred to 10 mL of ice cold saline
(Isoton, Beckman). A Z2 Coulter Counter (Beckman)
with 70 um aperture (particle size 10 – 350 uL) was used
for particle analysis.

Kinetic growth modeling
Custom Matlab programs (available at [20]) were used for
modeling growth curves from kinetic spot intensity data.
Three different methods were used to calculate Cell Prolif-
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eration Phenotypes for 96 cultures from spot intensities.
CPPs were calculated directly from the raw spot intensities
in the first method and from logistic and spline-fitted
models in the second and third methods, respectively. For
the first method, the final recorded intensity was used as
the FPI, Riemann sum was used to calculate the AUGC,
and the MSR was determined by calculating the percent
change in spot intensity with respect to time between con-
secutive points and recording the maximum among those
values, as follows:

• Graw(t) = Spot intensity at time t.

• FPIraw = Spot intensity at final time-point; i.e. Graw(tfinal).

•  where n = number of time-

points - 1 (Riemann sum).

• 

• 

• MSRraw = maximum value of Specific Rateraw over [0, tfi-

nal].

• TMRraw= ti where Rateraw(ti) is maximal over [0, tfinal].

For the second method, the raw data were first fit to a
cubic smoothing spline and the resulting function was
transformed to a B-spline (a generalization of the Bézier
curve). The spline function was integrated to calculate the
AUGC, and it was evaluated at the last time-point to
obtain FPI. The specific rate was calculated as the deriva-
tive with respect to time, divided by the function (i.e.,
population growth rate divided by population size), and
the MSR was determined from these values. Spot intensi-
ties less than 1000 (a conservative threshold for image
sensitivity) were not considered in MSR calculation for the
spline and raw models (see figure 5).

For growth curve modeling with the logistic equation, the
Curve Fitting Toolbox in Matlab was used. Time series
data were first filtered to eliminate values that exceeded
the initial carrying capacity by more than 10% (see Figs. 5
and 6). An estimate of the initial carrying capacity was
determined by first using a smoothing spline to determine
the TMR. The spot intensity at TMR was multiplied by 2.2
to estimate the carrying capacity (according to the logistic
equation, the population size is at half its carrying capac-
ity at TMR). The TMR spot intensity was scaled by 2.2,

instead of 2, to prevent excessive filtering. The following
form of the logistic equation was next used to fit the fil-
tered data:

The logistic model returns values for the parameters, K, r,
and l. K is the initial carrying capacity approximating the
FPI; r is equivalent to the MSR, and l is equivalent to TMR.

Abbreviations
AUGC: Area Under Growth Curve.

CPP: Cell Proliferation Phenotype

FPI: Final Population Intensity

HTCP: High Throughput Cellular Phenotyping

MSR: Maximum Specific growth Rate.

PAA: Phenotypic Array Analysis

TMR: Time when Maximum growth Rate is observed
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Additional file 1
Licensing information and user instructions with screenshots of the user 
interface are described.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-3-S1.pdf]

Additional file 2
Correlation between image intensities and biomass of spotted cul-
tures. This file contains the initial dilution of each spot, the spot intensity 
after 23 hrs, median cell volume, total cell volume, and total cell number 
measurements for each culture spot, as described in Figure 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-3-S2.xls]
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Additional file 3
Area normalization of spot intensities. This file contains averaged, nor-
malized and non-normalized spot intensity data from each set of 96 cul-
tures. Arrays made with 2 μL and 4 μL spots from the same liquid culture 
were compared, as described in Figure 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-3-S3.xls]

Additional file 4
Cell Proliferation Phenotypes – precision of different growth models. 
This file contains the data used to calculate median values and percent 
standard deviation for Cell Proliferation Phenotypes calculated by differ-
ent growth models using raw and normalized spot intensity values (See 
Tables 1 and 2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-3-S4.xls]

Additional file 5
Robustness of growth models against data removal. Beginning with 
data in Additional file 4, time points were randomly removed, and MSR 
was recalculated using each growth model (Fig. 8). This file contains the 
actual time points and average and standard deviation of MSR of all 96 
spots.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-3-S5.xls]
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