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Abstract
Background: Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been
implicated in the pathogenesis of many obesity-related metabolic disorders. When human
hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty
acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the
processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene
expression profiles were measured to characterize the cellular states. A computational model was
developed to integrate these disparate data to reveal the underlying pathways and mechanisms
involved in saturated fatty acid toxicity.

Results: A hierarchical framework consisting of three stages was developed to identify the
processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid
oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the
cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA
microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes
and gene sets that regulate the metabolic responses identified in step 1 were identified by
integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block
partial least squares (MBPLS) regression model.

Conclusion: The hierarchical approach suggested potential mechanisms involved in mediating the
cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH
dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3
(EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets
that were suggested by the analysis were experimentally validated.
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Background
Elevated levels of free fatty acids (FFAs) have been impli-
cated in the pathogenesis of many obesity-related meta-
bolic disorders [1-4], such as fatty liver disease and
steatohepatitis. Dietary fatty acids produce a variety of
metabolic and genetic effects on liver cells. Fatty acids
compete with glucose for oxidation at the TCA cycle [5].
Fatty acids also cause changes in the enzyme make-up of
the cells by regulating the transcription of enzymes of
metabolism. FFAs exert their transcriptional effects by
activating transcription factors (TFs) such as sterol recep-
tor element binding protein (SREBP), peroxisome prolif-
erator activated receptors (PPARs) and hepatic nuclear
factors (HNFs) [6]. PPARs regulate the expression of pro-
teins involved in fatty acid oxidation, SREBP regulates
phospholipid and cholesterol synthesis and HNF affects
both lipid and carbohydrate metabolism.

Tumor necrosis factor alpha (TNF-α) is another factor that
has been shown to affect the function of hepatocytes in
numerous ways. It has been associated with the develop-
ment of hepatic insulin resistance and hepatocyte cell
death [7-10]. TNF-α also activates transcription factors
such as nuclear factor kappa B (NFκB) and c-Jun [11,12].
These transcription factors alter the expression of genes
involved in cellular metabolism, cell proliferation and cell
death [11,12]. Hepatocytes are known to be resistant to
the cytotoxic action of TNF-α due to prompt upregulation
of cytoprotective genes mediated by the activation of NF-
κB in response to TNF-α [13]. Therefore, the cytotoxic
effect of TNF-α requires a secondary insult, e.g., transcrip-
tional inhibition [14] or glutathione depletion [15].

In vivo, under conditions of obesity, hepatocytes are
simultaneously exposed to elevated FFAs and TNF-α. The
importance of these factors in the pathogenesis of many
diseases motivated this study of the physiological, meta-
bolic and genetic effects of the simultaneous exposures to
different types of FFAs and TNF-α. Among the many
responses to FFA and TNF-α, the mechanism of cell death
in response to simultaneous exposure to these factors is
not well characterized. Hepatocyte cell death is suggested
to play an important role in the development of various
hepatic disorders, e.g. in non-alcoholic steatohepatitis
(NASH). Previous studies on the toxic effects of different
types of FFAs on liver cells have identified that saturated
FFAs are much more toxic than unsaturated FFAs [16-19].
These studies have suggested that ER-ROS (reactive oxy-
gen species) stress [17], mitochondrial alterations [18]
and lysosomal permeabilization [19] are the major mech-
anisms in the toxicity of saturated FFAs. Studies on the
toxicity of saturated FFAs to other cells have suggested that
increased ROS production and ceramide synthesis [20,21]
are the major mechanisms of palmitate-toxicity in those
cells. Similarly, increased ceramide and ROS generation

have been suggested to play important roles in the toxicity
of TNF-α to hepatocytes [10,22]. However, there has not
been any study on the cytotoxic effects of simultaneous
exposure to FFAs and TNF-α.

Human hepatoblastoma cells (HepG2) were treated
simultaneously with different types of FFAs (saturated,
monounsaturated and polyunsaturated) and levels of
TNF-α and the cytotoxic, metabolic and genetic responses
were studied. Exposing the cells to saturated fatty acid
(palmitate) was cytotoxic and the exposure to TNF-α
increased this toxicity, whereas the unsaturated FFAs
induced increased triglyceride (TG) accumulation and
were not cytotoxic. TNF-α alone was not toxic, either
alone or in combination with the unsaturated FFAs. Our
objective was to develop an approach to elucidate the
underlying pathways that confer the cytotoxicity. The hier-
archical framework developed to integrate the metabolic
and genetic information to identify the genes and biolog-
ical processes regulating a phenotypic response is shown
in Figure 1. The framework consisted of three stages. First,
the metabolic changes associated with the cytotoxic phe-
notype were identified with Fisher's Discriminant Analy-
sis (FDA) [23]. Ketone body (e.g., beta-hydroxybutyrate
(BOH) and acetoacetate (AcAc)) release and TG accumu-
lation were identified to be the most important in separat-
ing the phenotypes, suggesting their involvement in
inducing the cytotoxicity. To identify the signaling and
gene regulatory pathways involved in regulating the toxic-
ity, the genomic responses were measured using cDNA

An overview of the hierarchical approachFigure 1
An overview of the hierarchical approach. First, important 
metabolic changes relevant to a phenotype were identified 
with discriminant analysis. Second, to identify the transcrip-
tionally altered pathways, gene set enrichment analysis 
(GSEA) was applied to the cDNA microarray data. Finally, 
the expression of the enriched gene sets and the metabolic 
profiles were integrated with a multi-block partial least 
squares analysis (MBPLS) regression model to identify the 
genes and gene sets that regulate the metabolic pathways 
identified in step 1.
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microarrays and analyzed with GSEA [24]. GSEA has been
applied successfully to identify the signaling, transcrip-
tional regulatory and metabolic pathways involved in the
development of type 2 diabetes [25]. GSEA indicated the
involvement of mitochondria-related, oxidative stress-
related and FFA metabolism pathways in inducing the
cytotoxic phenotype. Finally, the gene expression and
metabolic profiles were integrated with multi-block par-
tial least squares (MBPLS) regression analysis [26] to iden-
tify the genes most relevant to the metabolic changes
which correlated most with the cytotoxicity. Some of the
identified genes were experimentally perturbed to validate
their predicted roles in regulating the cytotoxicity. This
analysis identified that NADH dehydrogenases, aldehyde
dehydrogenase 1A1 (ALDH1A1) and endothelial mem-
brane protein 3 (EMP3) played important roles in the tox-
icity of FFAs.

Results
1. Metabolic changes relevant to cytotoxicity
As shown in Figure 2, the mono- and poly- unsaturated
fatty acids, TNF-α and their combinations were found to
be non-toxic. However, the saturated fatty acid palmitate
was toxic to the cells and TNF-α increased this toxicity.
Because the release of LDH is a late event in the process of
cell death, we also measured the activation of caspase-3.
Exposure to palmitate caused a significant elevation in the
caspase-3 activity (Figure 3). Exposure to TNF-α signifi-

cantly increased the caspase-3 activation only in the
palmitate-treated cells, but not in the cells treated with
control medium or oleate. These results indicated signifi-
cant interactive effects of palmitate and TNF-α on the
process of cell death. Finally, we also found that cells
exposed to palmitate were also TUNEL positive (Figure 4),
further corroborating with the evidence of initiation of
apoptosis in these cells. Because palmitate was found to
be the primary factor in the toxicity and the effects of TNF-
α were only secondary to that of palmitate, we further
investigated the mechanisms of toxicity of this FFA. To
evaluate the metabolic changes responsible for mediating
the toxicity, the rates of uptake/release of 27 metabolites,
of glucose, fatty acid and amino acid metabolism, were
measured and shown in additional data file 1. FDA was
applied to identify the metabolic changes responsible for
separating the phenotypic response (cytotoxic versus non-
toxic as defined by the level of lactate dehydrogenase
(LDH) release). As shown in Figure 5, the palmitate-
treated samples were separated from the rest in a space
defined by the first FDA projection (T1) with the palmi-
tate samples taking on negative values while the rest of the
samples taking on positive values on the Y axis. Further-
more, as shown in Figure 6 the production of BOH and
acetoacetate, with the most negative coefficients, sepa-
rated the palmitate samples in the direction of toxicity,
while the uptake of cysteine, ornithine and phenyla-
lanine, with the most positive coefficients, separated the
samples away from the toxicity. In addition, the palmi-

Caspase-3 activation measurementFigure 3
Caspase-3 activation measurement. Cells were treated for 24 
h with different FFA in the presence or absence of 100 ng/ml 
TNF-α. At the end of incubation, cells were harvested and 
caspase-3 activity was measured fluorimetrically. Data pre-
sented as average +/- s.d. of n = 9 from three independent 
experiments. *, significantly greater than control; #, signifi-
cant TNF-α interaction effect (significantly greater than 
palmitate culture in absence of TNF-α). For both * and #, p < 
0.01.

LDH release measurement of cytotoxicity of palmitateFigure 2
LDH release measurement of cytotoxicity of palmitate. Con-
fluent HepG2 cells were treated with saturated (palmitate), 
monounsaturated (oleate) and polyunsaturated (linoleate) 
free fatty acid at 0.7 mM in presence or absence of TNF-α (0, 
20 and 100 ng/ml) for 24 h. Cytotoxicity was measured as % 
LDH released. Data presented as average +/- s.d. of n = 9 
from three independent experiments. *, significantly greater 
than control; #, significant TNF-α interaction effect (signifi-
cantly greater than palmitate culture in absence of TNF-α. 
For both * and #, p < 0.01.
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tate-treated samples were also separated from the rest of
the sample in the space defined by the second FDA projec-
tion (T2) with the palmitate samples having smaller val-
ues than the rest of the samples as shown in Figure 7.
Correspondingly, we found that TG and ornithine with
the most positive coefficients in this projection separated
the palmitate samples away from the toxicity as shown in
Figure 8. Acetoacetate and BOH are the products of fatty
acid oxidation. Increased fatty acid oxidation is known to
increase oxidative stress and cell death [27,28]. TG accu-

mulation has been found to protect cells from palmitate
induced lipoxicity [29]. Thus, FDA analysis confirmed
that fatty acid oxidation is positively associated with the
palmitate-induced cytotoxicity, while accumulation of TG
is negatively associated to cytotoxicity.

Fisher's discriminant analysis of metabolitesFigure 6
Fisher's discriminant analysis of metabolites. Loading plot of 
the coefficients of metabolites in T1.

Fisher's discriminant analysis of metabolitesFigure 5
Fisher's discriminant analysis of metabolites. First FDA pro-
jection (T1) score plot of the samples.

TUNEL assay measurementFigure 4
TUNEL assay measurement. Cells were treated as in Figure 2 followed by fluorimetric TUNEL assay using a commercially avail-
able kit.
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2. Functional pathway analysis with GSEA
37 gene sets involved in a variety of cellular processes and
organelles which are known to play important roles in the
changes caused by FFA and TNF-α were evaluated to iden-
tify which of these processes were associated with palmi-
tate-induced cytotoxicity. The gene sets evaluated
included those of fatty acid metabolism, cell death, TNF-
α signaling, etc., (see Table 1 for a full list). 14 of the 37
gene sets were significantly enriched with nominal p val-
ues less than 0.05, and shown in Table 2. The enriched
pathways included electron transport chain (ETC), fatty
acid metabolism, glycolysis, oxidative phosphorylation,
ROS, the pentose phosphate pathway (PPP), cell death,
fatty acid beta-oxidation, TCA cycle, fructose metabolism,
glutathione, and the ERK 1, ERK 2, MAP kinase pathways.
This suggested that the toxicity may be associated with
changes in oxidative stress related pathways such as ROS
and glutathione, as well as energy generating processes of
glycolysis, oxidative phosphorylation and ETC. Impor-
tantly, the gene set of sphingolipid (ceramide) metabo-
lism was not selected, indicating that ceramide
metabolism may not play an important role in the

observed toxicity. Notably, most of the enriched gene sets
belong to the mitochondria, for example fatty acid beta-
oxidation, electron transport chain and oxidative phos-
phorylation, depicting a central role of mitochondria in
the cytotoxicity. The gene set of mitochondria, which
included 229 genes, was also significantly altered in the
palmitate-treated cells, with a nominal p value of
0.00189.

3. Integrating the metabolic and the gene expression 
profiles to identify the pathways relevant to the 
cytotoxicity
To identify the genes that regulate the metabolic functions
most closely associated with cytotoxicity, MBPLS models
were developed to predict the metabolic processes based
upon the expression data of the gene sets identified by
GSEA. Ketogenesis and TG accumulation were identified
to be positively and negatively related to LDH release in
step 2, respectively. Therefore, two MBPLS models were
developed to model BOH and TG, respectively. The
MBPLS models contained 14 blocks each, corresponding
to the 14 enriched gene sets identified by the GSEA. The
importance of individual genes within these functional
groups was identified by evaluating the regression coeffi-
cients of the genes. In particular, the genes with high pos-
itive regression coefficients to ketogenesis and TG
accumulation are discussed below as the predicted roles of

Table 1: Gene sets used in the GSEA analysis

Metabolic pathways

Glycolysis Fatty acid metabolism
TCA Oxidative phosphorylation
PPP pathway Beta-oxidation
Fructose Sphingoglycolipid
Fatty acid biosynthesis Glutathione

Signal pathways

Bcl2 family_and_reg_network Map_kinase
Caspase Mapkk
Cell death Ppar-alpha
CeramidePathway Ppar-gamma
CrebPathway S1P signaling
NF-kB Programmed cell death
p38 ERK1 Erk2 Mapk pathway
Akt JNK
EGF TNFalpha
EIF2 Stress Pathway
EIF4 TNFR1 pathway
Electron Transport Chain TNFR2 pathways
ERK pathway ROS

Cellular Component

Mitochondria

Fisher's discriminant analysis of metabolitesFigure 7
Fisher's discriminant analysis of metabolites. Second FDA 
projection (T2) score plot of the samples.

Fisher's discriminant analysis of metabolitesFigure 8
Fisher's discriminant analysis of metabolites. Loading plot of 
the coefficients of metabolites in T2.
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these genes were evaluated using inhibitors or RNA inter-
ference (RNAi).

Increased production of ketone bodies, such as BOH and
acetoacetate, has been shown to be associated with oxida-
tive stress [27,28] and an important role of oxidative stress
has been identified in the palmitate toxicity [18]. There-
fore, genes with large (positive or negative) regression
coefficients to ketone body release could suggest pathways
and genes relevant to the cytotoxicity. The genes with the
largest positive regression coefficients to B-OH are listed
in Table 3. The complete list of regression coefficients can
be found in the additional data file 2. Genes relevant to
ROS production, fatty acid metabolism, and detoxifica-
tion of lipid peroxidation products were found to have
high regression coefficients. GSTM5 was most positively
related to the BOH (and in turn, the cytotoxicity), while
other isoforms of GST, e.g., GSTM4 and GSTM1 (listed in
additional file 2), had negative regression coefficients. The
basal level of GSTM5 in the liver is much lower than those
of GSTM1 and GSTM4 [30]. Therefore, in spite of a large

positive coefficient of GSTM5, the combined negative
effect of GSTM1 and GSTM4 on the cytotoxicity is
expected to dominate. Similarly, aldehyde dehydrogenase
1 (ALDH1A1) was found to have a positive relation to
cytotoxicity, while ALDH1A3 (listed in additional file 2)
had a negative regression coefficient. We found that the
basal levels of ALDH1A3 were about 10-5-times lower
than that of ALDH1A1 (Table 4). Therefore, the cytotoxic
effects of ALDH1A1 would be greater than the cytoprotec-
tive effects of ALDH1A3. Indeed, over-expression of
ALDH1A3 had no significant effect on the cytotoxicity or
the caspase-3 activation by palmitate (not shown). Two
NADH dehydrogenases had highly positive regression
coefficients, indicating a positive role of these genes in the
cytotoxicity. Their combined coefficient was greater than
any other gene, indicating that these genes may play very
important roles in the toxicity. NADH dehydrogenase
complex, or complex I of the electron transport chain, is a
main site of superoxide production [30,31]. In the course
of electron transfer some of the activated oxygen is
released as superoxides or H2O2 [31]. Their selection sug-

Table 3: Top ranked genes relevant to beta-hydroxbutyrate

Accession # Regression coefficient Gene Name

N56898 3.89E-02 glutathione S-transferase M5 (GSTM5)
AA664101 3.64E-02 aldehyde dehydrogenase 1 family, member A1 (ALDH1A1)
AA406536 3.33E-02 NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase) (NDUFS1)
AA680322 3.15E-02 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa (NDUFA4)
AA443630 2.93E-02 aldehyde dehydrogenase 3 family, member B2 (ALDH3B2)
T72259 2.72E-02 cytochrome P450, subfamily IIA (phenobarbital-inducible), polypeptide 7 (CYP2A7), transcript variant 2
H59758 2.31E-02 v-raf murine sarcoma 3611 viral oncogene homolog 1 (ARAF1)
AA035384 2.21E-02 succinate dehydrogenase complex, subunit D, integral membrane protein (SDHD)
AA055585 2.20E-02 core promoter element binding protein (COPEB)
T52484 2.20E-02 Nerve growth factor, beta polypeptide (NGFB)

Top 10 genes with regression coefficients of highest absolute values. The regression coefficients of all genes range from -0.042 to 0.039.

Table 2: Enriched gene sets identified by GSEA analysis

Gene Sets SIZE NES NOM p-val

Electron Transport Chain 43 -1.998 0.000
Fatty acid metabolism 33 -1.824 0.000
Glycolysis 55 -1.765 0.000
Oxidative Phosphorylation 30 -1.890 0.004
ROS 26 -1.741 0.009
PPP pathway 15 -1.644 0.010
Cell death 15 -1.631 0.010
ERK pathway 31 -1.620 0.016
Fatty acids beta-oxidation 7 -1.580 0.020
Fatty acid biosynthesis 5 -1.574 0.021
TCA 15 -1.631 0.023
Fructose 19 -1.599 0.026
ERK1 Erk2 Mapk pathway 29 -1.542 0.034
Glutathione 23 -1.520 0.036
Mitochondria 229 -1.945 0.002

Size: number of genes in the gene set; NES: normalized enrichment score; NOM p-val: nominal P value.
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gested involvement of ROS in the toxicity. Indeed, ele-
vated ROS production was observed in cells treated with
palmitate (see section 4 b ii).

Intracellular TG was identified to have significantly nega-
tive association to the toxicity. In agreement with this, the
channeling of palmitate to TG has been shown to protect
the cells from its toxic effects [29]. Thus, genes with high
positive regression coefficients to intracellular TG accu-
mulation may be potential targets for cytoprotection.
Such genes are listed in Table 5. A complete list of regres-
sion coefficients is available in the additional data file 3.
Endothelial membrane protein 3 (EMP3) was the gene
with greatest positive coefficient, indicating that a reduc-
tion in the expression of this gene would be cytotoxic and
vice-versa. The function of EMP3 is not clearly under-
stood, it is known to be involved in cell growth, differen-
tiation, and apoptosis [32,33]. Many genes involved in
glutathione metabolism had positive regression coeffi-
cients. Examples of genes related to glutathione that were
selected included glutamate-cysteine ligase, catalytic sub-
unit (GCL-c), glutathione S-transferase M4 (GSTM4),
microsomal glutathione S-transferase 1 (MGST1), glutath-
ione S-transferase A2 (GSTA2) and glutathione reductase
(GSR). The selection of these genes indicated a cytoprotec-
tive role of these genes, and corroborated with the role of
oxidative stress in the toxicity. Finally, some genes
involved in regulation of glycolysis such as hexokinase 1
(HK1) and glucokinase (hexokinase 4) regulatory protein
(GCKR) had large positive regression coefficients, indicat-
ing that upregulation of glycolysis may be cytoprotective.
Exposure to FFAs is associated with a reduction in cellular
energetics, e.g., a decrease in glycolytic enzymes [34,35]
and a reduction in ATP synthesis due to mitochondrial
uncoupling [36]. This reduction in cellular ATP levels may
play a role in the toxicity [37] or exacerbate it. Under these
conditions, increasing glycolysis may provide an alterna-
tive route for ATP synthesis and reduce the toxicity.

4. Experimental validations
Hepatocytes are resistant to the cytotoxic effects of TNF-α
due to rapid upregulation of cytoprotective genes, medi-
ated in part by the activation of NF-κB by TNF-α. It is for
this reason that most of the previous studies on the cell
death caused by TNF-α employ a secondary insult, such as
transcriptional inhibition or glutathione depletion [4,15].

The observation of the dependence of TNF-α toxicity on
that of palmitate suggests that the toxicity of palmitate can
act as a secondary/additional insult. Because the saturated
free fatty acid (palmitate) was found to have the greatest
toxicity of all the treatments and the toxicity of TNF-α
depended on the effect of palmitate, the subsequent vali-
dations were conducted for the palmitate conditions.

a. Validation of GSEA results
a.i. The role of mitochondria
Mitochondria are known to be central to cell death path-
ways, and most cytotoxic insults are associated with a loss
of mitochondrial integrity. Mitochondrial membrane
potential is an indicator of mitochondrial integrity and
functioning. GSEA suggested involvement of these
organelles in the cytotoxicity. We measured the mitochon-
drial potentials in response to the various treatments, as
shown in Figure 9. Palmitate-treatment significantly
decreased the mitochondrial potential. The loss of mito-
chondrial integrity will cause many deleterious effects,
including the breakdown of energy generation, increased
ROS production, and the release of apoptogenic factors
such as cytochrome c from the mitochondria [38].

Effect of FFAs and TNF-α on the mitochondrial potentialFigure 9
Effect of FFAs and TNF-α on the mitochondrial potential. 
HepG2 cells were exposed to different types of FFA and/or 
TNF-α for 24 h. After the treatments, the cells were 
exposed to 5 μM JC-1 dye in DMEM for 30 minutes, and then 
washed with PBS. Fluorescence of the cells were read using a 
microplate reader. Cells were excited at 488 nm, the green 
fluorescence was measured as emission at 527 nm, and the 
red fluorescence was measured as emission at 590 nm. The 
mitochondrial potentials were measured as the ratio of red 
to green fluorescence. Data presented as average +/- s.d. of n 
= 9 from three independent experiments. *, significantly 
lower than control.

Table 4: Basal Levels of ALDH1A1 and ALDH1A3 in control cells 
(relative to GAPDH) measured by RT-PCR

Average SD

GAPDH 1 0.02
ALDH1A1 4.91E-02 5.92E-03
ALDH1A3 1.92E-07 7.34E-08
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a.ii. Lack of involvement of de novo ceramide synthesis
De novo ceramide synthesis has been suggested to play an
important role in the toxicity of saturated FFAs to beta
cells and cardiomyocytes. However, the ceramide metab-
olism pathway was not found to be significantly enriched
according to GSEA, suggesting that this pathway may not
play an important role in the toxicity of the saturated FFAs
to hepatoma cells. To test this prediction, we treated the
cells with palmitate in the presence of an inhibitor of de
novo ceramide synthesis, Fumonisin B1 (FB1). Treatment
with this inhibitor reduced the ceramide levels signifi-
cantly (by about 77%, Table 6). However, no change in
the toxicity was observed. Similarly, treatments with
higher concentrations of this inhibitor (up to 100 uM)
had no effect on the toxicity of the saturated FFA. There-
fore, these experiments corroborated the GSEA prediction
that ceramide metabolism does not play an important
role in the toxicity. These results were also in agreement
with a previous study which found that hepatocyte cell
death induced by the saturated FFAs is independent of
ceramide synthesis [17,18].

b. Validating hierarchical model predictions
b.i. Important role of NADH dehydrogenase
Exposure to palmitate has been shown to increase the
ROS production in CHO cells [20]. We investigated the
role of ROS production in the palmitate-toxicity in our
case. As shown in Figure 10, the ROS levels were signifi-
cantly increased in the palmitate-treated cells. In contrast,
ROS levels were not increased in the cells treated with the
unsaturated FFA, oleate, and treatments with radical scav-
engers significantly reduced palmitate toxicity [18]. This
suggested that increased ROS production plays an impor-
tant role in palmitate toxicity. We performed further stud-
ies with co-supplementation of FFAs. Exposure to 0.4 mM
palmitate was also toxic to the cells (about 20% LDH
release on day 2), while treatment with 0.4 mM palmitate
and 0.3 mM oleate were non-toxic (LDH release < 1%).
These results indicated that the production of ROS and

LDH release were specific to palmitate treatment. NADH
dehydrogenases (mitochondrial complex I) has been sug-
gested as an important source of ROS. The hierarchical
model identified that 2 isoforms of NADH dehydroge-
nases had important roles in the cytotoxicity of the FFA.
To experimentally validate their role in the cytotoxicity,
we measured the ROS level and LDH release in palmitate
cultured cells pretreated with irreversible NADH dehydro-
genase inhibitor. Pretreatment with the NADH dehydro-
genase inhibitor rotenone (0.5 uM) significantly reduced
the ROS levels (Figure 10) as well as the LDH release (Fig-
ure 11), confirming the role of NADH dehydrogenase in
the observed toxicity as predicted by the model. The cyto-
toxicity was, however, not completely prevented by the
complex I inhibitor, suggesting the involvement of other,
ROS-independent, mechanisms in the cytotoxicity.

b.ii. The role of aldehyde dehydrogenases
The analysis of regression coefficients suggested that many
ALDH family members had positive association with the
toxicity. Among these, ALDH1A1 was found to have the
greatest positive regression coefficient to cytotoxicity
(Table 3). Exposure to palmitate, but not to oleate, signif-
icantly increased the expression of ALDH1A1 (Figure 12).
Therefore, we tested the effect of RNA interference (RNAi)
of the ALDH1A1 gene on the toxicity. RNAi of ALDH1A1
significantly reduced its expression (Figure 13). The reduc-
tion in ALDH1A1 significantly reduced the caspase-3
activity of the cells in response to palmitate alone (Figure
14), confirming the cytotoxic role of ALDH1A1.

b.iii. The role of endothelial membrane protein 3 (EMP3)
EMP3 was identified as a potentially cytoprotective gene.
This suggested that knocking down EMP3 would increase
the toxicity of palmitate. To test this prediction, EMP3 was
knocked down using RNAi (Figure 15). The RNA interfer-
ence of EMP3 significantly increased the toxicity of palmi-
tate treatment (Figure 16), verifying the predicted
cytoprotective role of EMP3.

Table 5: Top ranked genes positively related to TG

Accession # Regr. Coeff. Gene Name

W73810 2.23E-02 epithelial membrane protein 3 (EMP3), mRNA.
AA485272 1.95E-02 hexokinase 1 (HK1), transcript variant 5, nuclear gene encoding mitochondrial protein, mRNA.
N45129 1.82E-02 glutamate-cysteine ligase, catalytic subunit
T67006 1.80E-02 glucokinase (hexokinase 4) regulatory protein (GCKR), mRNA.
AA486570 1.79E-02 glutathione S-transferase M4 (GSTM4), transcript variant 3, mRNA.
R66006 1.72E-02 acyl-Coenzyme A dehydrogenase, long chain (ACADL), mRNA.
AA495936 1.58E-02 microsomal glutathione S-transferase 1 (MGST1), transcript variant 1a, mRNA.
H93482 1.50E-02 glutamate-cysteine ligase, catalytic subunit
T73468 1.45E-02 glutathione S-transferase A2 (GSTA2), mRNA.
AA676663 1.34E-02 acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain (ACADS), nuclear gene encoding mitochondrial 

protein, mRNA.

The regression coefficients of all genes range from -0.027 to 0.023
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Discussion
In this paper, a framework was developed to hierarchically
integrate the metabolic and gene expression profiles to
identify the genes which play important roles in determin-
ing the phenotypic responses. Application of this frame-
work to the FFA and TNF-α induced cytotoxicity in HepG2
cells yielded novel targets to regulate the toxicity. The
genes and pathways relevant to the cytotoxicity were iden-
tified and experimentally validated. For example, GSEA
identified that mitochondrial alterations, but not cera-
mide synthesis, were associated with the toxicity. An
advantage of incorporating GSEA analysis into our hierar-
chical approach is that incorporating knowledge-based
information enhances the signal to noise ratio and the
robustness of the analysis, and permits the detection of
genes with modest changes [24]. As illustrated by 1) the
identification of ceramide metabolism not as an impor-
tant player in the observed toxicity, which was experimen-
tally validated, and 2) the novel targets identified by the

hierarchical approach, suggest that the GSEA pathway
analysis can compensate for the limited number of repli-
cates to provide useful information. The former predic-
tion is supported by the observation of no effect on the
palmitate-induced toxicity upon inhibition of ceramide
synthesis. The MBPLS prediction of the role of NADH
dehydrogenase in regulating cytotoxicity was validated
with complex I inhibitor studies, while those of ALDH1A1
and EMP3 were confirmed by RNAi studies.

Identification of genetic changes that control the pheno-
typic responses is an area of active research. This requires
identification of genes that regulate the altered metabolic/
physiological changes. Among the simpler models to
identify such genes are the multivariate linear regression
models [39]. We also conducted multivariate linear
regression analysis to relate the genetic and metabolic
profiles, and found that the linear regression identified a
much smaller number of genes relevant to a metabolite

Complex I inhibitor decreases LDH releaseFigure 11
Complex I inhibitor decreases LDH release. HepG2 cells 
were pretreated with the inhibitor of mitochondrial complex 
I- rotenone (0.5 μM) for 30 minutes, and then exposed to 0.7 
mM palmitate for 24 h. After the treatment, the media were 
collected and LDH released was measured. The cells were 
lyzed in 1% triton for 24 h to obtain the unreleased LDH. 
The LDH released was normalized to the total LDH 
(released + unreleased). Data presented as average +/- s.d. of 
n = 9 from three independent experiments. *, significantly 
lower than palmitate.

Table 6: Effect of ceramide inhibition on the toxicity of palmitate

Treatment C16 Ceramide (pmol/mg protein) LDH released (%)

Control (BSA) 0.63 ± 0.28 * 1.27 ± 0.48 *
Palmitate 24.44 ± 6.39 4.71 ± 1.67
Fumonisin B1 6.80 ± 2.85 * 5.15 ± 1.38

*, significantly lower than palmitate

Complex I inhibitor decreases ROS levelFigure 10
Complex I inhibitor decreases ROS level. HepG2 cells were 
pretreated with the inhibitor of mitochondrial complex I- 
rotenone (0.5 μM) for 30 minutes, and then exposed to 0.7 
mM palmitate for 24 h. After the treatment, the cells were 
then washed with PBS, and exposed to 5 μM AM-DCFDA in 
DMEM for 30 min, following which the cells were washed 
again. The fluorescence was read by exciting the cells at 488 
nm and reading the emission at 527 nm. Data presented as 
average +/- s.d. of n = 9 from three independent experi-
ments. *, significantly higher than the control.
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production or release which were assigned regression
coefficients different from zero. For example, only 25
genes out of the 272 genes had weights different from zero
in the linear regression model to predict BOH (see addi-
tional data file 4 for the list of genes). None of the impor-
tant genes identified by MBPLS such as NADH
dehydrogenases, glutathione S-transferases, ALDHs or
EMP3 were selected. Linear regression model is ill-condi-
tioned when the number of variables (genes) exceeds the

number of observations (conditions), resulting in most of
the regression coefficients taking on values of zero.
MBPLS is a multivariate approach capable of modeling a
large number of variables using a relatively small set of
observations. It circumvents typical problems associated
with the highly correlated and collinear nature of experi-
mental data by projecting the data onto a few independ-
ent latent factors. These latent factors simplify the
complex and diverse relationships by capturing the varia-

RNA interference of EMP3Figure 15
RNA interference of EMP3. Cells were transfected with 
siRNA targeting EMP3, control cells were mock-transfected. 
The transfected cells were cultured in antibiotic-free medium 
for 24 h, followed by culture in medium containing 4% BSA 
for 24 h. Total RNA was extracted and the transcript levels 
of EMP3 were measured by RT-PCR. Data presented as 
mean +/- s.d. of n = 9 from 3 independent experiments.

ALDH1A1 SilencingFigure 13
ALDH1A1 Silencing. Cells were transfected with siRNA tar-
geting ALDH1A1, control cells were mock-transfected. The 
transfected cells were cultured in antibiotic-free medium for 
24 h, followed by culture in medium containing 4% BSA for 
24 h. Total RNA was extracted and the transcript levels of 
ALDH1A1 were measured by RT-PCR. Data presented as 
mean +/- s.d. of n = 9 from 3 independent experiments.

Effect of the FFAs on the levels of ALDH1A1Figure 12
Effect of the FFAs on the levels of ALDH1A1. Cells were 
treated with 0.7 mM palmitate or oleate complexed to 4% 
BSA. Control cells were treated with just BSA. After 24 h of 
the treatment, RNA was isolated and the transcript of 
ALDH1A1 was quantified by RT-PCR. Data presented as 
mean +/- s.d. of n = 9 from 3 independent experiments.

Effect of knock down of ALDH1A1 on the caspase-3 activity in response to palmitateFigure 14
Effect of knock down of ALDH1A1 on the caspase-3 activity 
in response to palmitate. After culturing the cells in anti-
biotic-free medium for 24 h following transfection, cells were 
treated for 24 h with control (4% BSA) or palmitate (0.7 
mM) media for another 24 h. The caspase-3 activities were 
measure with a fluorescence-based assay using a commer-
cially available kit. Data presented as mean +/- s.d. of n = 9 
from 3 independent experiments.
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ble interactions contained in the original data in a new set
of fewer unobserved/latent variables.

In this study, in addition to the generation of important
information such as the roles of NADH dehydrogenases
and the lack of involvement of de novo ceramide in the
toxicity, two novel modulators of the palmitate-toxicity
(ALDH1A1 and EMP3) were identified and validated. A
notable point is the differences in the response of
ALDH1A1 and EMP3 silencing. While silencing
ALDH1A1 reduced caspase-3 activity significantly, it did
not affect LDH release. On the contrary, silencing EMP3
increased LDH release without any affecting the caspase-3
activity. These differences in the cellular responses are
most likely due to the cellular location of the correspond-
ing proteins (cytosolic for ALDH1A1 and cell membrane
for EMP3). Exposure to elevated levels of FFA would lead
to increased omega oxidation, in which ALDHs play an
important role. Omega oxidation can be a source of ROS
and toxicity [40]. Under these conditions, ALDH knock-
down would reduce the omega oxidation and hence the
cytotoxicity. In addition to its cytotoxic roles, ALDH1A1
may have potentially cytoprotective effects mediated by
the detoxification of reactive lipid aldehydes [41]. EMP3
is a protein of the peripheral membrane protein 22
(PMP22) family [32]. The proteins of this family have
been suggested to play important roles in cell prolifera-
tion and apoptosis [33]. However, there has not been any
study on the role of EMP3 in fatty acid toxicity. Its effect
on the LDH release suggests the possibility that this pro-
tein may regulate membrane integrity.

Conclusion
In summary, this paper illustrated how phenotypic, meta-
bolic and genetic profiles can be integrated hierarchically
to identify phenotype relevant genes and pathways and
novel targets. This approach identified the involvement of
ROS generation, altered fatty acid and energy, but not
ceramide metabolism in the cytotoxicity. In addition,
novel targets such as ALDH1A1 and EMP3 were identified
to modulate the toxicity of saturated FFA. Thus, the inte-
gration of metabolic and genetic information provides a
more comprehensive picture of the perturbations as well
as novel targets to regulate cellular responses.

Methods
Materials
HepG2/C3A cells and Fetal Bovine Serum were purchased
from American Type Culture Collection (ATCC, Manas-
sas, VA). Dulbecco's modified Eagle's medium with high
glucose and no pyruvate (DMEM), Penicillin-Streptomy-
cin (P/S), phosphate buffered saline (PBS, pH 7.4) and tri-
zol reagent were purchased from Invitrogen (Carlsbad,
CA). Fatty acid free bovine serum albumin (BSA) was pur-
chased from MP Biomedicals (Chillicothe, OH). Sodium
salts of all the fatty acids (palmitate, oleate and linoleate)
were purchased from Sigma Aldrich chemical company
(St. Louis, MO). 6-carboxy-2',7'-dichlorodihydrofluores-
cein diacetate, di(acetoxymethyl ester) (DCFDA dye) was
obtained from Molecular Probes (Eugene, OR). Recom-
binant human TNF-α was from Peprotech (Rocky Hill,
NJ).

Cell culture
One million HepG2/C3A cells were seeded into each well
of a 6-well culture plate. The cells were cultured in 2 ml of
medium containing DMEM supplemented with 10% fetal
bovine serum (FBS) and 2% Penicillin-streptomycin (P/
S). Cells were incubated at 37°C and in 10% CO2 atmos-
phere. After the cells reached confluence, the medium was
replaced with 2 ml of the chosen medium, either HepG2,
or the FFA medium containing 0.7 mM palmitate, oleate
or linoleate; or the FFA-TNF-α medium. The fatty acids
chosen are the most prevalent in the class of saturated
(palmitate), monounsaturated (oleate) and polyunsatu-
rated (linoleate) fatty acids in the plasma. The concentra-
tion of fatty acids chosen (0.7 mM) is commonly found in
conditions of obesity. The FFAs were dissolved in 4% fatty
acid-free BSA. Therefore, in addition to the HepG2
medium control, 4% fatty acid-free BSA in HepG2
medium was used as another control. TNF-α was added
from a 100ug/ml stock in deionized water to make the
desired final concentrations of either 20 or 100 ng/ml.

Cytotoxicity measurement
The cytotoxicity of the treatments was measured as the
fraction of lactate dehydrogenase (LDH) released into the

Effect of knock down of EMP3 on the LDH release in response to palmitateFigure 16
Effect of knock down of EMP3 on the LDH release in 
response to palmitate. After culturing the cells in antibiotic-
free medium for 24 h following transfection, cells were 
treated for 24 h with control (4% BSA) or palmitate (0.7 
mM) media for another 24 h and the LDH release was meas-
ured. Data presented as mean +/- s.d. of n = 9 from 3 inde-
pendent experiments.
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medium. LDH is a cytosolic enzyme which leaks out into
the medium on exposure to toxic chemicals. Thus, the
fraction of LDH released into the medium provides an
accurate estimate of the cytotoxicity. For the LDH meas-
urements, the cells were cultured in different media for 24
h and the supernatant was collected. Cells were washed
with phosphate buffered saline (PBS) and kept in 1% tri-
ton-X-100 in PBS for another 24 h at 37°C. Cell lysate was
then collected, vortexed for 15 seconds and centrifuged at
7000 rpm for 5 minutes. Cytotoxicity detection kit (Roche
Applied Science, Indianapolis, IN) was used to measure
the LDH release. LDH released was normalized to the
total LDH (released + lyzed). The LDH released into the
medium was normalized to total LDH, as shown in the
equation below

Caspase-3 assay and TUNEL staining
Cells were treated with different FFA in the presence and
absence of TNF-α. Caspase-3 activity was measured using
a commercially available fluorescence-based assay kit
from Biomol, according to manufacturer's protocol. Data
were normalized to protein measurements from parallel
experiments. For TUNEL staining, cells were cultured in
Labtek Chamber Slide System. TUNEL staining was per-
formed using the Dead-End fluorimetric TUNEL system
from Promega Biosciences, according to manufacturer's
protocol and imaged under a fluorescence microscope
(Leica).

Measurement of metabolic uptake and production
The net uptake or production of a species was calculated
by the difference in the concentration of the specie in the
medium, before and after the treatment. The concentra-
tions of metabolites were measured using enzymatic
assays or HPLC. The amino acids were measured by HPLC
using the AccQTag method (Waters) according to the
manufacturer's protocol. Briefly, the media collected after
treatments were de-proteinized by adding 4X acetonitrile
(by volume) and keeping on ice for 1 h, after which the
samples were centrifuged and the supernatant was deriva-
tized using the reagent in the AccQTag kit as per the
instructions given. The samples were analyzed with HPLC
on a Waters 2690 separations module, using an AccQTag
column (Waters) and fluorescence detection (Waters
detector). Intracellular triglycerides were measured by lys-
ing the cells with 1% triton-X-100 for 24 h and measuring
the triglycerides by an enzymatic assay kit from Sigma.
Glucose, lactate and glycerol were measured using enzy-
matic analysis kits from Sigma. Free fatty acid half micro
kit (Roche Diagnostics) was used to find the concentra-
tion of free fatty acids in the medium. Beta-hydroxybu-
tyrate (BOH) released was measured using a kit from

Stanbio. Acetoacetate was measured using enzymatic
assay [42].

Fisher's discriminant analysis
FDA identifies the projection axis that maximizes the ratio
of the between-group and the within-group variations.
Details on the FDA algorithm can be found in [23]. FDA
was applied to identify which among the 27 measured
metabolic uptake/production contributed to the separa-
tion of the different phenotypes (cytotoxic versus non-
toxic). Because there were 2 classes (toxic and non-toxic),
a single discriminating vector is sufficient to separate
them [43]. The relative importance of the metabolites was
identified by the projection of the metabolites in the new
discriminant vector space.

Microarray analyses
Cells were cultured in 10 cm tissue culture plates until
confluence and then exposed to different treatments for
24 h. RNA was isolated with the Trizol reagent. The gene
expression profiles were obtained with the cDNA microar-
rays. The microarray analyses were conducted at the Van
Andel Institute, Grand Rapids, MI. The protocols are avail-
able online at [44]. There were two biological replicates
for each condition and each replicate was measured with
the Cy3 and Cy5 dyes (i.e. there were two technical repli-
cates for each biological replicate). The microarray data
has been deposited at the GEO website [45], with a query
number of GSE5441.

Measurement of reactive oxygen species
Confluent cells were treated with the control medium or
0.7 mM palmitate for different time periods. Positive con-
trol cells were treated with 2 mM H2O2 for 1 h at 37°C.
Measurement of ROS was performed by flow cytometry,
using 6-carboxy-2',7'-dichlorodihydrofluorescein diace-
tate, di(acetoxymethyl ester) (C-2938, Molecular Probes,
Eugene, OR) dye. A 5 mM stock solution of the dye was
prepared in DMSO, and diluted to the 5 umol/L in
DMEM. After the desired treatment times, the cells were
exposed to the dye for 30 min, following which the cells
were washed and imaged under a fluorescence micro-
scope. Quantitative measurements were made by reading
the fluorescence of the cells in a microplate fluorimeter
with excitation at 488 nm and emission at 527 nm.

Measurement of ceramide
The cells were treated with 0.7 mM palmitate in the pres-
ence or absence of 20 μM Fumonisin B1 (FB1) for 24 h,
following which the lipids were extracted by the method
of Bligh and Dyer [46]. The C-16 ceramide in the samples
were then quantified with LC-MS as per a previously pub-
lished protocol [47].

%
( )

( )
LDHrelease

LDH medium

LDH total
= ×100 (1)
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Gene Set Enrichment Analysis (GSEA) of the gene data
GSEA integrates a priori knowledge of a gene's functional
role with the expression data to detect concerted expres-
sion changes in a set of genes responsible for producing a
phenotype. The software GSEA-P, from [48], was used for
the GSEA analysis. Thirty seven gene sets were selected
from the molecular signature database, MsigDB [25] func-
tional gene group c2, as shown in Table 1. These sets
included 10 metabolic pathways, 26 signal pathways and
1 cellular component. An enrichment score of a gene set S
characterizes whether the set of genes randomly distrib-
uted across the list or falls mainly at the bottom or top of
the list. The null hypothesis that a gene set S randomly dis-
tributes across the ranked gene list was tested with Kol-
mogorov-Smirnov test, with the statistical significance
value estimated through 1000 random permutations of
the phenotype label. The gene sets with a high significance
of enrichment are considered important in separating the
distinct phenotypes.

Integrating the gene expression and metabolic profiles
MBPLS is a hierarchical multivariate analysis method
[49,50], where the variables are divided into different
blocks based upon a priori knowledge, for example
according to different stages of a process [49] or different
metabolic pathways in a cell [26]. For details of the
MBPLS algorithm, refer [26]. In the MBPLS model, the dif-
ferent gene sets identified by GSEA formed the blocks of
the MBPLS. This ensured that the blocks were separated
according to the functional role of the genes. Block scores
were extracted from each block to predict the metabolic
uptake/productions. This facilitated the identification of
an important block (gene set) to a metabolic flux, and
identified the important genes within the block. Impor-
tant genes sets were identified by evaluating the weights of
each block and importance of individual genes were then
further identified by evaluating the regression coefficients
of the genes within the block. Two latent variables were
selected to be extracted from each block based upon the
prediction accuracy of the MBPLS model. The N-way tool-
box [51] was applied to conduct the MBPLS modeling.

RNA interference and reverse transfection
Silencer® Validated siRNAs targeting human EMP3 and
ALDH1A1 mRNA were purchased from Ambion (Austin,
TX). The synthesized oligonucleotides for siRNA of EMP3
are 5'-GUCCCUGAAUCUCUGGUACtt-3' and 5'-GUAC-
CAGAGAUUCAGGGACtc-3', and the synthesized oligo-
nucleotides for siRNA of ALDH1A1 are 5'-
GGAACAGUGUGGGUGAAUUtt-3' and 5'-AAUUCAC-
CCACACUGUUCCtg-3'. Reverse transfection of siRNA
was performed. In general, siRNA and the transfection rea-
gent, Lipofectamine RNAiMAX (Invitrogen, Carlsbad,
CA), were diluted in Opti-MEM (Invitrogen) devoid of
any serum and antibiotics and added to the 6-well plates.

After 20 minutes, the same numbers of HepG2 cells in
antibiotic free media were plated in each well and incu-
bated at 37°C. After 24 h of transfection, the HepG2 cells
were cultured for another 24 hours in regular media with
other additives, for example palmitate. Then cells were
harvested, washed twice with phosphate-buffered saline
and lysed.

Overexpression and forward transfection
The ALDH1A3 plasmid, pCMV6-XL4-hALDH1A3, was
purchased from Origene (Rockville, MD). Transient trans-
fection was performed according to the Lipofectamine
2000 (Invitrogen) method. In general, the HepG2 cells
were seeded in 6-well plates and cultured until reaching
80% confluency. Before transfection, the cells were
washed twice with phosphate buffered saline, and
medium was replaced with 2 ml of Opti-MEM medium. 1
μg/well of pCMV6-XL4-hALDH1A3 was then mixed with
5ul/well of Lipofectamine 2000 in Opti-MEM, and 20
minutes later, the mixture was added to the wells. After 6–
12 hours of transfection, the cells were then cultured in
regular media, treated with other additives like palmitate
or TNF-α, and harvested after the treatment.

Real-time quantitative RT-PCR analysis
Total RNA was extracted from cells with an RNeasy mini
kit and depleted of contaminating DNA with RNase-free
DNase (Qiagen, Valencia, CA). Equal amounts of total
RNA (1 μg) were reverse-transcribed using an iScript
cDNA synthesis kit (Bio-RAD). The first-strand cDNA was
used as a template. The primers used for quantitative RT-
PCR analyses of human EMP3 (5'-GTGGTCTCAGCCCT-
TCACA-3' and 5'-ACGTGCAGTCGTACCAGAGA-3'),
human ALDH1A1 (5'-AGCCTTCACAGGATCAACAGA-3'
and 5'-GTCGGCATCAGCTAACACAA-3'), human
ALDH1A3 (5'-GCCCTTTATCTCGGCTCTCT-3' and 5'-
CGGTGAAGGCGATCTTGT-3') and human GAPDH (5'-
AACTTTGGTATCGTGGAAGGA-3' and 5'-CAGTAGAG-
GCAGGGATGATGT-3') were synthesized by Operon Bio-
technologies, Inc. (Huntsville, AL). RT-PCR was
performed in 25-μl reactions using 1/10 of the cDNA pro-
duced by reverse transcription, 0.2 μM each primer, 1 X
SYBR green supermix from Bio-RAD, and an annealing
temperature of 57°C for 40 cycles. Each sample was
assayed in three independent RT reactions and triplicate
reactions each and normalized to GAPDH expression.
Negative controls included the absence of enzyme in the
RT reaction and absence of template during PCR. The
cycle threshold (CT) values corresponding to the PCR
cycle number at which fluorescence emission in real time
reaches a threshold above the base-line emission were
determined using MyIQ™ Real-Time PCR Detection Sys-
tem.
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Abbreviations
ACAC acetoacetate

ALDH aldehyde dehydrogenase

BOH beta-hydroxy butyrate

EMP3 endothelial membrane protein 3

FFA free fatty acid

GSEA gene set enrichment analysis

GST glutathione-S transferase

HNF hepatic nuclear factors

LDH lactate dehydrogenase

MBPLS multi-block partial least squares analysis

NASH non-alcoholic steatohepatitis

NF-κB nuclear factor kappa B

PPAR peroxisome proliferator activated receptors

ROS Reactive oxygen species

SREBP sterol receptor element binding protein

TNF-α tumor necrosis factor alpha

Authors' contributions
ZL conceived the methodology and performed part of the
experiments and wrote the manuscript. SS performed the
cell culture, LDH measurement, microarray measurement,
caspase, TUNNEL and metabolite measurement, wrote
part of the manuscript. SM performed cell culture and
extracted RNA for microarray measurement. XY per-
formed ALDH and EMP3 experiment and wrote part of
the manuscript. PN, JR, BH prepared, did QC/QC and per-
formed cDNA microarry measurements. CC conceived the
study and supervised the experiment and writing of the
manuscript. All authors read and approved the final man-
uscript.

Additional material

Acknowledgements
This work is supported in part by the National Science Foundation (BES 
0222747, BES 0331297, and 0425821), the National Institute of Health 
(1R01GM079688-01), the Environmental Protection Agency 
(RD83184701), the MSU Foundation and the Center for Systems Biology 
and the Whitaker Foundation.

References
1. Felber JP, Golay A: Pathways from obesity to diabetes.  Int J Obes

Relat Metab Disord 2002, 26 Suppl 2:S39-45.
2. Kobayashi M: Molecular mechanism of insulin resistance.

Saishin Igaku 1998, 53(6):1210-1216.
3. Tilg H: Cytokines and liver diseases.  Can J Gastroenterol 2001,

15(10):661-668.
4. Watada H, Kawamori R: Insulin resistance and NASH.  BIO Clinica

2003, 18(10):874-879.
5. Randle PJ, Garland PB, Newsholme EA, Hales CN: The glucose

fatty acid cycle in obesity and maturity onset diabetes melli-
tus.  Ann N Y Acad Sci 1965, 131(1):324-333.

6. Jump DB: Fatty acid regulation of gene transcription.  Crit Rev
Clin Lab Sci 2004, 41(1):41-78.

7. Cheung AT, Ree D, Kolls JK, Fuselier J, Coy DH, Bryer-Ash M: An in
vivo model for elucidation of the mechanism of tumor
necrosis factor-alpha (TNF-alpha)-induced insulin resist-
ance: evidence for differential regulation of insulin signaling
by TNF-alpha.  Endocrinology 1998, 139(12):4928-4935.

8. Lang CH, Dobrescu C, Bagby GJ: Tumor necrosis factor impairs
insulin action on peripheral glucose disposal and hepatic glu-
cose output.  Endocrinology 1992, 130(1):43-52.

9. Schwabe RF, Brenner DA: Mechanisms of Liver Injury. I. TNF-
alpha-induced liver injury: role of IKK, JNK, and ROS path-
ways.  Am J Physiol Gastrointest Liver Physiol 2006, 290(4):G583-9.

10. Ding WX, Yin XM: Dissection of the multiple mechanisms of
TNF-alpha-induced apoptosis in liver injury.  J Cell Mol Med
2004, 8(4):445-454.

11. Heyninck K, Wullaert A, Beyaert R: Nuclear factor-kappa B plays
a central role in tumour necrosis factor-mediated liver dis-
ease.  Biochem Pharmacol 2003, 66(8):1409-1415.

12. Brenner DA: Signal transduction during liver regeneration.  J
Gastroenterol Hepatol 1998, 13 Suppl:S93-5.

13. Tilg H, Diehl AM: Cytokines in alcoholic and nonalcoholic stea-
tohepatitis.  N Engl J Med 2000, 343(20):1467-1476.

14. Rousset S, Bringuier A, Lardeux B, Feldmann G: Apoptosis induced
by tumor necrosis factor a in human hepatoma cell lines.  Falk
Symposium 113:303-313.

Additional data file 1
Metabolic profiles. The data is a table of 27 measured metabolic uptake/
productions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-21-S1.xls]

Additional data file 2
BOH regression coefficients. Additional data file 2 is a table listing the 
regression coefficients of genes to BOH.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-21-S2.xls]

Additional data file 3
TG regression coefficients. Additional data file 3 is a table listing the 
regression coefficients of genes to TG.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-21-S3.xls]

Additional data file 4
BOH linear regression coefficients. Additional data file 4 is a table listing 
the regression coefficients to BOH with the linear regression model.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-21-S4.xls]
Page 14 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1752-0509-1-21-S1.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-1-21-S2.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-1-21-S3.xls
http://www.biomedcentral.com/content/supplementary/1752-0509-1-21-S4.xls
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12174327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5216972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5216972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5216972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1727716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1727716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1727716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15601573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15601573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9792040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078773
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078773


BMC Systems Biology 2007, 1:21 http://www.biomedcentral.com/1752-0509/1/21
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

15. Nagai H, Matsumaru K, Feng G, Kaplowitz N: Reduced glutathione
depletion causes necrosis and sensitization to tumor necro-
sis factor-alpha-induced apoptosis in cultured mouse hepato-
cytes.  Hepatology 2002, 36(1):55-64.

16. Ji J, Zhang L, Wang P, Mu YM, Zhu XY, Wu YY, Yu H, Zhang B, Chen
SM, Sun XZ: Saturated free fatty acid, palmitic acid, induces
apoptosis in fetal hepatocytes in culture.  Exp Toxicol Pathol
2005, 56(6):369-376.

17. Wei Y, Wang D, Topczewski F, Pagliassotti MJ: Saturated fatty
acids induce endoplasmic reticulum stress and apoptosis
independently of ceramide in liver cells.  Am J Physiol Endocrinol
Metab 2006, 291(2):E275-81.

18. Srivastava S, Chan C: Hydrogen peroxide and hydroxyl radicals
mediate palmitate-induced cytotoxicity to hepatoma cells:
relation to mitochondrial permeability transition.  Free Radic
Res 2007, 41(1):38-49.

19. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ: Bax inhi-
bition protects against free fatty acid-induced lysosomal per-
meabilization.  Am J Physiol Gastrointest Liver Physiol 2006,
290(6):G1339-46.

20. Listenberger LL, Ory DS, Schaffer JE: Palmitate-induced apopto-
sis can occur through a ceramide-independent pathway.  J Biol
Chem 2001, 276(18):14890-14895.

21. Lu ZH, Mu YM, Wang BA, Li XL, Lu JM, Li JY, Pan CY, Yanase T,
Nawata H: Saturated free fatty acids, palmitic acid and stearic
acid, induce apoptosis by stimulation of ceramide generation
in rat testicular Leydig cell.  Biochem Biophys Res Commun 2003,
303(4):1002-1007.

22. Gomez EO, Mendoza-Milla C, Ibarra-Sanchez MJ, Ventura-Gallegos
JL, Zentella A: Ceramide reproduces late appearance of oxida-
tive stress during TNF-mediated cell death in L929 cells.  Bio-
chem Biophys Res Commun 1996, 228(2):505-509.

23. Chan C, Hwang D, Stephanopoulos GN, Yarmush ML, Stephanopou-
los G: Application of multivariate analysis to optimize func-
tion of cultured hepatocytes.  Biotechnol Prog 2003,
19(2):580-598.

24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP:
Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles.  Proc Natl
Acad Sci U S A 2005, 102(43):15545-15550.

25. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar
J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly
MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B,
Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-
responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes.  Nat Genet
2003, 34(3):267-273.

26. Hwang D, Stephanopoulos G, Chan C: Inverse modeling using
multi-block PLS to determine the environmental conditions
that provide optimal cellular function.  Bioinformatics 2004,
20(4):487-499.

27. Gill HK, Wu GY: Non-alcoholic fatty liver disease and the met-
abolic syndrome: effects of weight loss and a review of popu-
lar diets. Are low carbohydrate diets the answer?  World J
Gastroenterol 2006, 12(3):345-353.

28. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ,
Sterling RK, Luketic VA, Shiffman ML, Clore JN: Nonalcoholic stea-
tohepatitis: association of insulin resistance and mitochon-
drial abnormalities.  Gastroenterology 2001, 120(5):1183-1192.

29. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr., Ory DS,
Schaffer JE: Triglyceride accumulation protects against fatty
acid-induced lipotoxicity.  Proc Natl Acad Sci U S A 2003,
100(6):3077-3082.

30. Takahashi Y, Campbell EA, Hirata Y, Takayama T, Listowsky I: A
basis for differentiating among the multiple human Mu-glu-
tathione S-transferases and molecular cloning of brain
GSTM5.  J Biol Chem 1993, 268(12):8893-8898.

31. Moller IM: PLANT MITOCHONDRIA AND OXIDATIVE
STRESS: Electron Transport, NADPH Turnover, and
Metabolism of Reactive Oxygen Species.  Annu Rev Plant Physiol
Plant Mol Biol 2001, 52:561-591.

32. Taylor V, Suter U: Epithelial membrane protein-2 and epithe-
lial membrane protein-3: two novel members of the periph-
eral myelin protein 22 gene family.  Gene 1996, 175(1-
2):115-120.

33. Jetten AM, Suter U: The peripheral myelin protein 22 and epi-
thelial membrane protein family.  Prog Nucleic Acid Res Mol Biol
2000, 64:97-129.

34. Dentin R, Benhamed F, Pegorier JP, Foufelle F, Viollet B, Vaulont S,
Girard J, Postic C: Polyunsaturated fatty acids suppress glyco-
lytic and lipogenic genes through the inhibition of ChREBP
nuclear protein translocation.  J Clin Invest 2005,
115(10):2843-2854.

35. Bolon C, Gauthier C, Simonnet H: Glycolysis inhibition by palmi-
tate in renal cells cultured in a two-chamber system.  Am J
Physiol 1997, 273(5 Pt 1):C1732-8.

36. Brookes PS: Mitochondrial H(+) leak and ROS generation: an
odd couple.  Free Radic Biol Med 2005, 38(1):12-23.

37. Parke DV: Mechanisms of chemical toxicity--a unifying hypo-
thesis.  Regul Toxicol Pharmacol 1982, 2(4):267-286.

38. Kim JS, He L, Lemasters JJ: Mitochondrial permeability transi-
tion: a common pathway to necrosis and apoptosis.  Biochem
Biophys Res Commun 2003, 304(3):463-470.

39. Jia Z, Xu S: Clustering expressed genes on the basis of their
association with a quantitative phenotype.  Genet Res 2005,
86(3):193-207.

40. Ockner RK, Kaikaus RM, Bass NM: Fatty-acid metabolism and
the pathogenesis of hepatocellular carcinoma: review and
hypothesis.  Hepatology 1993, 18(3):669-676.

41. Choudhary S, Xiao T, Vergara LA, Srivastava S, Nees D, Piatigorsky J,
Ansari NH: Role of aldehyde dehydrogenase isozymes in the
defense of rat lens and human lens epithelial cells against oxi-
dative stress.  Invest Ophthalmol Vis Sci 2005, 46(1):259-267.

42. Olsen C: An enzymatic fluorimetric micromethod for the
determination of acetoacetate, -hydroxybutyrate, pyruvate
and lactate.  Clin Chim Acta 1971, 33(2):293-300.

43. Belhumeur PN, Hespanha JP, Kriegman DJ: Eigenfaces vs. Fisher-
faces: Recognition Using Class Specific Linear Projection.
IEEE Trans Pattern Analysis and Machine Intelligence 1997,
19(7):711-720.

44. cDNA microarry protocol at Van Andel Institute   [http://
www.vai.org/Research/Services/LMT/Protocols.aspx]

45. GEO website    [http://www.broad.harvard.edu/gsea/]
46. Bligh EG, Dyer WJ: A rapid method of total lipid extraction and

purification.  Can J Biochem Physiol 1959, 37(8):911-917.
47. Yamaguchi M, Miyashita Y, Kumagai Y, Kojo S: Change in liver and

plasma ceramides during D-galactosamine-induced acute
hepatic injury by LC-MS/MS.  Bioorg Med Chem Lett 2004,
14(15):4061-4064.

48. GSEA website   [http://www.ncbi.nlm.nih.gov/geo]
49. MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M: Process Mon-

itoring and Diagnosis by Multi-Block PLS Methods.  AIChE Jour-
nal 1994, 40(5):826-838.

50. Lopes JA, Menezes JC, Westerhuis JA, Smilde AK: Multiblock PLS
analysis of an industrial pharmaceutical process.  Biotechnol Bio-
eng 2002, 80(4):419-427.

51. Andersson CA, Bro R: The N-way Toolbox for MATLAB.  Che-
mometrics & Intelligent Laboratory Systems 2000, 52(1):1-4.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12085349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15945276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15945276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16492686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16492686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16492686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17164177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12684033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8920943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8920943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12675604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12675604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12629214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12629214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8473333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8473333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8473333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8917086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10697408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16184193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9374661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9374661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15589367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15589367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7185094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7185094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12729580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16454859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16454859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4330337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4330337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4330337
http://www.vai.org/Research/Services/LMT/Protocols.aspx
http://www.vai.org/Research/Services/LMT/Protocols.aspx
http://www.broad.harvard.edu/gsea/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13671378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13671378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15225726
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12325150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12325150
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	1. Metabolic changes relevant to cytotoxicity
	2. Functional pathway analysis with GSEA
	3. Integrating the metabolic and the gene expression profiles to identify the pathways relevant to the cytotoxicity
	4. Experimental validations
	a. Validation of GSEA results
	a.i. The role of mitochondria
	a.ii. Lack of involvement of de novo ceramide synthesis

	b. Validating hierarchical model predictions
	b.i. Important role of NADH dehydrogenase
	b.ii. The role of aldehyde dehydrogenases
	b.iii. The role of endothelial membrane protein 3 (EMP3)



	Discussion
	Conclusion
	Methods
	Materials
	Cell culture
	Cytotoxicity measurement
	Caspase-3 assay and TUNEL staining
	Measurement of metabolic uptake and production
	Fisher's discriminant analysis
	Microarray analyses
	Measurement of reactive oxygen species
	Measurement of ceramide
	Gene Set Enrichment Analysis (GSEA) of the gene data
	Integrating the gene expression and metabolic profiles
	RNA interference and reverse transfection
	Overexpression and forward transfection
	Real-time quantitative RT-PCR analysis

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

